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Abstract
Software design is a non-trivial task. Especially for making sound design decisions there is still
little guidance and communicating the reasons behind those decisions also bears difficulties.
There are many software design principles which help here but in the past they have mainly
been discussed and examined in isolation. The goal of this thesis is to interconnect these
principles in order to support design decision making. Just like patterns are interconnected
to pattern languages, principles can be interconnected to principle languages where the
consideration of one principle inevitably leads to the consideration of other principles. For
this thesis such a principle language has been constructed and documented in a wiki, which
will go online shortly. A snapshot of the wiki is included in this thesis. Along the principle
language an analytic design approach has been developed which uses the principle language
to guide developers making design decisions. In order to evaluate the approach and the
language, two experiments have been conducted which show promising results. The first
experiment examines the utility of the approach compared to Fowler’s code smells and
Martin’s SOLID principles. And the second experiment indicates that a consequent usage of
the principle language may have a positive effect on software quality. This thesis opens up a
new area of research. There are still many unanswered questions. But this work lays the
foundation for answering them.

Zusammenfassung
Der Softwareentwurf ist eine nicht-triviale Aufgabe. Insbesondere für das Treffen von Ent-
wurfsentscheidungen besteht immer noch wenig Unterstützung. Auch das Kommunizieren der
Gründe für solche Entwufsentscheidungen ist nicht einfach. Es gibt viele Entwurfsprinzipien,
die hier helfen, jedoch wurden diese bisher hauptsächlich einzeln und unabhängig voneinander
untersucht. Das Ziel dieser Arbeit ist es, solche Prinzipien miteinander zu vernetzen, um so
bei Entwurfsentscheidungen zu helfen. So wie man Muster zu Mustersprachen verbindet, kann
man auch Prinzipien zu Prinzipiensprachen verbinden, sodass das Betrachten eines Prinzips
unausweichlich zu weiteren Prinzipien führt. Für diese Arbeit wurde so eine Prinzipiensprache
konstruiert und in einem Wiki dokumentiert, das in Kürze online gehen wird. Ein Ausschnitt
aus dem Wiki ist in dieser Arbeit enthalten. Neben der Prinzipiensprache wurde ein
analytischer Entwurfsansatz entwickelt, der die Prinzipiensprache nutzt, um Entwicklern
beim Treffen von Entwurfsentscheidungen zu helfen. Um sowohl den Ansatz, als auch
die Sprache zu evaluieren, wurden zwei Experimente durchgeführt, die vielversprechende
Ergebnisse zeigen. Das eine Experiment untersucht die Nützlichkeit der Prinzipiensprache
im Vergleich zu Fowlers code smells und Martins SOLID-Prinzipien. Das zweite Experiment
deutet an, dass die konsequente Nutzung der Prinzipiensprache positive Effekte auf die
Softwarequalität haben könnte. Diese Arbeit eröffnet ein neues Forschungsfeld. Es gibt noch
viele unbeantwortete Fragen, aber diese Arbeit legt die Grundlage zu deren Beantwortung.
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1 Introduction

1.1 Motivation
Software design is an inherently complex task. It requires knowledge, skill, and experience.
First of all the domain, the technology, as well as the programming paradigm and design
approach (e. g. object-oriented design) have to be known and well understood. Though not
trivial, such knowledge is relatively easily obtained as knowledge is teachable. On the other
hand skill and experience, which are needed to make good design decisions, are not directly
teachable. So it takes a long time to gain good design competences. The same problem
arises when communicating about design. Furthermore as experience is not tangible, it is
difficult to communicate. So discussing which design solution is better in a given context
can be difficult. “Experience” alone is not a convincing reason to prefer one solution over
another one. So it’s not only difficult to do design and to make design decisions but also to
explain the reasons for these decisions and to talk about them in a development team.
As a resort often scenarios are used. If one solution to a design problem is better than

another one, there has to be some situation where this advantage takes effect. So scenarios
are constructed that show the advantage. Such a scenario could for example be a speculative
future enhancement or change of a specific part of the software. If one solution makes this
easier than another one, it is better in this case.

But this scenario-based approach has several disadvantages. A scenario is just one concrete
situation. There may be others where the solution has a contrary effect. So in order to get a
complete picture, many different scenarios have to be considered. Furthermore constructing
suitable scenarios can be a time-consuming task. So constructing scenarios for every design
decision is not feasible. A more light-weight approach is needed for making the every day
design decisions.
So another approach to do software design is to base it upon certain principles. A set

of principles may be used to describe a given design problem, assess possible solutions
and make the corresponding design decision. Such principles like for example →4.5.2 Low
Coupling (LC), →4.4.2 High Cohesion (HC) or →4.5.1 Tell, don’t Ask/Information Expert
(TdA/IE) give advices on how to design software. Using these principles one can reason
about software design in a more abstract manner compared to using concrete scenarios.
This does not make scenarios obsolete. Especially for functional requirements as well as for
certain non-functional requirements scenarios are still necessary. But principles can serve as
a general way of thinking for the every day design decisions. Since the early days of software
engineering seasoned designers and well-known researchers have condensed their experience
into easily memorable principles and rules. Using principles to share knowledge has a long
tradition in the history of software engineering. Some of these principles are well known and

1



1.2 Terms and Definitions 2

have been subject to scientific examination. Others still remain widely unnoticed.
But while principles in general are widely used to address particular design aspects, it is

still not completely understood how to use them in general. Furthermore principles mainly
have been described in isolation. But since usually several principles can be considered for a
given design problem, it is worthwhile examining how principles interrelate and interact with
each other as well as how a useful subset of generally applicable principles can look like.
Research on principles can help making principles a basis for teaching software design,

reusing design experience and communicating and documenting design decisions. By learning
how to use software design principles, one could gain design competences easier and faster
by reusing experience made by others. Such a reuse of design experience would certainly
have similar benefits as other forms of reuse, namely increased quality and simultaneously
reduced cost and time. Also already experienced designers could benefit from the use of
principles when they form a common vocabulary which enables them to talk about design
decisions in a clear way. So principles help communicating and documenting design decisions.
But at first research is needed to form such a common set of terms.
The goal of this thesis is to examine principles and their relationships, to describe

an approach for using them as a guideline for object-oriented design and as a means to
communicate about design decisions.

1.2 Terms and Definitions
Some of the terms used here to describe principles originate from research on patterns.
The term pattern was coined by the architect Christopher Alexander during the 1970ies to
describe common solutions for building towns and houses [1]. Ten years later Kent Beck
and Ward Cunningham transfered the idea to software development [2]. The idea gained
popularity in the following years most notably through the books “Design Patterns: Elements
of Reusable Object-Oriented Software” [3] and “Pattern-Oriented Software Architecture: A
System of Patterns” [4].
In the latter book pattern is defined as follows: “A pattern [. . . ] describes a particular

recurring design problem that arises in specific design contexts, and presents a well-proven
generic scheme for its solution. The solution scheme is specified by describing its constituent
components, their responsibilities and relationships, and the ways in which they collaborate.”
[4, p. 8]
There are several other popular definitions, that slightly differ, but all are about proven,

reusable solutions to common problems in certain design contexts. Although rarely stated
explicitly, there is a difference between a pattern description and the pattern itself. In the
following it will be helpful to distinguish these two terms:

Definition 1. A pattern is an often-used, proven solution to a recurring problem in a
certain context.

Definition 2. A pattern description is a document that describes a pattern by giving at
least the following information:
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• a name for the pattern,

• the context in which the pattern applies,

• the problem the pattern solves,

• and the solution.

Furthermore a pattern description typically also gives a motivation, some example code,
possible variations of the pattern, known uses, etc.
This distinction makes it clear that patterns are there—whether they are described or

not. They are simply recurring solutions, that have to be described in order to communicate
them and make them reusable. This also means that patterns normally are not constructed
but discovered. Someone realizes that a recurring problem has been solved basically in the
same way over and over again. And after the pattern has been found, it can be documented
using a pattern description. For convenience a pattern description is often called “pattern”
too. But actually it is more than that.
“Observer” for example is a design pattern. It solves the problem how to inform an

unknown set of dependent objects when a dependee object changes state. A description of
the pattern can be found in [3].

In order to support finding suitable patterns for a given problem, pattern descriptions are
collected in pattern catalogs.

Definition 3. A pattern catalog is a collection of several related pattern descriptions,
where each description has the same structure.

Typically pattern catalogs describe sets of patterns of a certain domain, a level of abstrac-
tion, or otherwise having a certain commonality.
The original idea by Christopher Alexander was to construct not only a pattern catalog

but something he calls a pattern language [1]. A pattern language in Alexander’s sense
interconnects the patterns in a way that forms a step-by-step guide for a designer. The
patterns form a decomposition structure that comprises all relevant problems that occur
during design. It precisely determines which design decisions to take in which order.
Alexander claims to have constructed a complete pattern language for architecture. So using
his pattern language a layperson should be able to make all design decisions necessary to
design a room, a house and even towns and regions [1].
It is doubtful whether such a pattern language is possible for general-purpose software

design. However it is useful to interconnect several pattern descriptions. For solving a
concrete design problem, not only one pattern might be considered but several alternatives.
Furthermore patterns are often not applied in isolation but combinations of several patterns
are used to solve more complex problems. Therefore it is helpful, when a pattern description
refers to possible alternatives as well as to complementary patterns the pattern may be
combined with. By doing so, a network of patterns is created that forms a more realistic
kind of pattern language:
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Definition 4. A pattern language is a pattern catalog where each pattern is linked to
those other patterns it is related to, such that the consideration of one pattern automatically
leads to alternatives and complements.

Because these pattern languages differ from those described by Alexander, they are
sometimes also called pattern systems [4].

Principles as discussed in this thesis are a more general and universal way to communicate
experience. Nevertheless they can be described in a similar way:

Definition 5. A principle is an informal rule that tells whether one solution is better than
another one with respect to a certain aspect.

Definition 6. A principle description is a document that describes a principle by giving
at least the following information:

• a name for the principle,

• a description of the rule,

• and a rationale that describes why the rule holds.

Furthermore a principle description should also contain examples, usage hints, etc.
The KISS principle (“keep it simple stupid”) for example says that a simpler solution

is better than a complex solution as it is easier to write, to read and thus to change. A
description of this principle can be found in section 4.3.2.
While patterns and pattern languages have been subject to thorough research, basic

principles of software design exist much longer but have mainly been discussed in isolation.
Only little work has been done to examine how principles interrelate. One could also imagine
principle catalogs and principle languages similar to pattern catalogs and pattern languages.
Exploring this idea is the subject of this thesis.

Definition 7. A principle catalog is a collection of several related principle descriptions,
where each description has the same structure.

Definition 8. A principle language is a principle catalog where each principle is linked to
those other principles it is related to, such that the consideration of one principle automatically
leads to others which are likely to be relevant in the same context.

In order to find a set of principles which is applicable to a certain design problem, one
can start with one relevant principle and the principle language helps to find other related
principles which fit into the demanded set. Complementary and contrary principles help
finding further aspects to consider whereas generalizations and specializations may be used
instead of a previously considered principle in order to find a level of abstraction that fits
the problem better.

Section 2.3.1 describes further aspects of the relation between patterns and principles.
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Several principles deal with the decomposition and interaction of classes, methods, proce-
dures, functions, etc. In order to abstract from the concrete syntactic element—be it a class,
a method, a procedure, a function, an executable or the like—the term “module” is used
here:

Definition 9. A module is a piece of code that carries a name and is syntactically distin-
guished from other parts of the code.

Another important notion is “interface”. In particular there are two terms, both named
“interface”. First of all there is the concept of an interface as an interaction point and second
there is the language feature interface:

Definition 10. An interface is an interaction point between modules. It’s a generic concept
that describes everything which is used in order to use a module.

Method signatures, for example are part of the interface of a class.

Definition 11. An interface is a language construct of several object-oriented programming
languages. It is resembles classes which only have abstract methods.

For clarity reasons the two terms are distinguished in this thesis by using different fonts.
The concept interface is always written like the rest of the text. But whenever the language
construct is meant, a monospace font is used: interface.
The goal of this thesis is to create a principle language for object-oriented design. This

defines the level of abstraction. The term is defined here as follows:

Definition 12. Object-Oriented Design (OOD) is the task of defining how the software
works on a class level which comprises the decomposition into classes, defining their interfaces,
their method signatures, as well as their internal structure.

The principle language to be constructed shall guide design decisions.

Definition 13. A design decision is any decision a developer has to make on the level of
software design.

In agile contexts OOD is seen as a part of coding while plan-driven development rather
sees it as a separate development phase before the actual coding. Nevertheless roughly the
same decisions have to be made.

This definition of OOD also means that everything that is confined to a single method is
not a part of OOD anymore and thus out of scope for this thesis. Decisions on algorithms,
on language constructs to use, on how to implement a certain algorithm, etc. are not relevant
here except if such a decision has an influence on other modules, too. These decisions are
too low-level. They may be guided by other principles but this is not a part of this thesis.
Moreover there are also decisions which are too high-level to be considered here. These

include decisions on requirements and architecture. Requirements specification tasks are
not technical enough to be part of OOD. And although architecture is normally considered
to be part of design, it is also not considered here. The decisions on an architecture scale
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normally concern subsystems, layers, packages and other groups of classes. Architecture is
normally not concerned with single classes and methods. So only these lower-level design
decisions are treated here.
Object-oriented design also means that the principle language only applies in an object-

oriented context. Typically an object-oriented programming language, like Java or C++,
is used, but the important point is that an object-oriented way of thinking is applied.
Procedural programming, functional programming and other programming paradigms are
not considered in this thesis.
Many of the principles discussed here are about maintainability of software. A serious

threat to maintainability are the so-called ripple effects:
Definition 14. A ripple effect occurs when one change in one module makes further
changes in other modules necessary which in tun may also produce further changes.
So a change “ripples” through the code of the software. This is generally undesirable

because these additional changes increase the effort spent on maintenance and are also
error-prone because some of these changes may be forgotten or may be made incorrectly.

1.3 Basic Idea
The basic idea of using principles as described and examined in this thesis is to use them
for making design decisions and to judge whether one solution to a problem is better than
another one in a certain context. The claim is that it is possible to describe all relevant
aspects of a given design problem using a characterizing set of principles.
The principles tell which aspects to consider while making the decision. One principle

might focus on the advantages of simplicity, another one might be about generality and
a third one considers effects of inheritance. These principles are usually conflicting which
results in the need for a trade-off. For example a solution typically cannot be likewise simple
and generic. If it is generic, it is not simple anymore and vice versa. So the designer has to
find a suitable compromise. Experienced designers do so intuitively but communicating this
intuition can be difficult. Principles help to explain why a certain solution is better than
another one.
In order to help inexperienced designers to think about all relevant aspects of a design

problem and in order to give experienced designers a common set of vocabulary to explain
design decisions, a principle language can be used. Such a principle language wires together
several principles so that the consideration of one principle leads to others which might be
relevant in the same situation. By following the relationships in the principle language, a
characterizing set of principles is obtained which describes the advantages and disadvantages
of the possible solutions. The designer can then use this information to make a sound
decision.

In this thesis this approach is explained in more detail (chapter 2), a principle language is
constructed (chapters 3 and 4) and the result is discussed (chapter 5). Two experiments are
conducted in order to evaluate approach and language (chapter 6) and in the end an outlook
describing further research possibilities is given (chapter 7).



2 Approach

2.1 Supporting Design Decisions
2.1.1 Generative vs. Analytic Design Approaches
Software development involves frequent design decisions. The designer has to decompose
the system to into subsystems and modules. Furthermore suitable interaction mechanisms
between the modules have to be defined, appropriate data structures have to be found and
so on. Each of these tasks or “problems” comprises a decision on how to solve it. Normally
there is more than one possible way to solve a given problem (several possible decompositions,
interaction mechanisms, data structures, etc.), so a decision has to be made. The designer
has to constantly assess possible solutions and to judge which one fits best to the given
context.
There are several approaches that help the designer to fulfill this task. These can be

grouped into two kinds: generative design methods and analytic decision techniques. First
of all the designer has to generate a solution matching the problem to be solved. Given a
certain problem description, generative design methods tell, how to construct a solution
step by step. As there is no simple step-by-step method that automatically creates perfect
results and there is not much hope that such an approach will show up suddenly [5], the
designer now has to judge whether the generated solution is good enough or whether he or
she needs to look for an alternative. The aforementioned analytic techniques help judging
this. Furthermore if eventually there are several possible solutions, they have to be compared
so the solution that fits best can be chosen. This is a second application of analytic design
techniques.

The approach discussed in this thesis is an analytic design technique. It does not generate
a solution but it helps comparing and judging them.

2.1.2 Judging Design Solutions
There are design decisions on different scales. Some are trivial (like deciding upon the
method identifiers or maybe parameter lists). Others are non-trivial but need to be made on
a daily basis nevertheless (deciding which data structures to use, how to decompose modules,
etc.). And lastly there are also large-scale architectural design decisions (e. g. deciding upon
the architectural style, the number of tiers, the middleware to use, etc.), which have a huge
impact on the quality of the system.
While making trivial design decisions, like naming methods, may also require some skill,

it is mostly not worthwhile to invest too much in it. These trivial decisions only have little

7
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impact and are also easily revocable. On the other hand it may have a larger impact when a
large amount of these trivial design decisions is done wrong. This is a case where skill is
simply irreplaceable.

For large-scale architectural decisions the situation is completely different. These decisions
typically have a massive impact on the quality of the system, so investing large efforts may
pay off here. There are several approaches dealing with these cases. They are typically
scenario-based like the architecture tradeoff analysis method (ATAM) [6]. At its heart these
approaches are about systematically examining the architecture using scenarios that show
how the system would behave in certain cases.

Between the trivial design decisions and the large-scale architectural design decisions there
are many non-trivial design decisions, which have a considerable impact but still have to be
carried out on a daily basis. Scenario-driven approaches like ATAM impose a huge effort
which do not pay off in these cases even when steps like stakeholder meetings are left out.
Constructing and examining several scenarios for design decisions that are made several
times a day is not feasible. Leaving these decisions to training and skill is not optimal either
because acquiring these skills is more complicated and time-consuming than it is to learn
how to make trivial decisions. Furthermore communicating the reasons for preferring one
solution over another one in such a case may be difficult if the decision is simply based on
“experience”. So a light-weight approach is needed to support these non-trivial daily design
decisions.

2.1.3 Communicating Reasons
When doing design, it is necessary to communicate with other developers. Reasons for design
decisions have to be explained and advantages and drawbacks have to be discussed. When
a team is doing design, they have to communicate among each other and when there are
separate designers and programmers, these two groups also have to communicate. Moreover
experienced designers have to communicate with novices.
Communication is important but it is not easy. A common vocabulary is necessary and

a common understanding of design. Especially when experienced designers talk to novices
they might be tempted to just claim that a certain design decision is just based on their
experience. This may be true but in such a case the novice has no chance to really understand
the decision.

Principle languages also help here. They form a common vocabulary of design so advantages
and disadvantages can be communicated. Novices can learn the principle language as a
language for talking about design.

2.2 Using Principles for Design
2.2.1 Origin of Principles
Human learning comprises the inference of rules. When certain observations or experiences
are made, a rule may be proposed which helps making predictions about future observations.
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Such rules may be definite laws or just rules of thumb, heuristics or approximations. The
establishment of laws is difficult and time-consuming. On the other hand simple rules of
thumb don’t need to be true in every case. So they can be established much easier as a
formal proof is not necessary and a sound reason suffices. They just need to be helpful.

Sometimes these rules are just intuitively used and not expressed in any way, thus staying
tacit knowledge. Tacit knowledge is only helpful for those who have it but cannot be
communicated to others. So in order to teach experiences, tacit knowledge needs to be
made explicit. Experienced software designers wrote about the experiences they made and
the rules they learned. By stating the rules as memorable principles, they made their tacit
knowledge explicit and teachable.

Some of these principles are very old as they have been discovered very early in the history
of computer science. Principles like separations of concerns, low coupling, high cohesion
or goto statement considered harmful date back to the 60ies and 70ies. Other principles
are rather new and sometimes only known to a specific community. And moreover some
knowledge still remains tacit and is not yet expressed as a principle although this would be
possible.

This thesis addresses principles for object-oriented general-purpose software design. Apart
from that, there are also principles for other contexts like framework design, user interface
design, coding, high-level architecture, or development process organization. The idea is
rather general and can be applied in a variety of contexts.

2.2.2 Conflicting Principles and Trade-Offs
Each principle describes a certain aspect of the problem. For example →4.3.2 Keep It Simple
Stupid (KISS) is about the value of simplicity. A solution is better when it is simpler. Another
principle that might also be considered in the same context is the →4.3.5 Generalization
Principle (GP) which says that a more generic solution is better than a specific one, as it
can be applied to a broader set of problems which increases reusability.
This is a typical example of two conflicting principles. Both are valid. A solution is

better (w. r. t. ease of writing, ease of use, readability and potential for fault introduction)
when it is simpler. And a solution is better (w. r. t. reusability and changeability) when
it is more general. These principles are conflicting. A solution normally is either simple
or generally applicable but not both. As the aspects, the principles refer to, are typically
not binary, adherence to the principles can be informally rated on a gradual scale. A good
design decision will now balance these principles and come up with a compromise that is
generalized to some extend but not too much in order to keep the solution reasonably simple.
While typically there is no solution which is good in every aspect or principle (e. g.

which is totally simple and totally generic) there might be solutions that are bad in both
aspects/principles (e. g. ones which are neither simple nor generally applicable). So a good
solution is “Pareto-optimal”, which means there is no other solution which is better in one
aspect/principle while being at least equally good in all others.
In that way good solutions can be distinguished from bad ones. Nevertheless there can

be several good, i. e. Pareto-optimal, solutions. For choosing between them, it is necessary
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Figure 2.1: Possible solutions for a problem and their adherence to GP and KISS principle.

to make a judgment which aspect is more important. When readability is more important,
the simpler solution should be chosen and in case of reusability being more important the
generic one should be chosen.

2.2.3 Example
A trivial example that shows the idea could be a square root function. In a program that
needs the square root of 2, the following design problem could arise: What is the best way to
compute the square root of 2? There are several possible solutions:

1. A constant: sqrt_2 = 1.4142135623730951 /* approx. */

2. A method that computes the square root of 2: double sqrt_2()

3. A method that computes arbitrary real square roots of real numbers:
double sqrt(double radicand)

4. A method that computes arbitrary real powers to real numbers:
double power(double base, double exponent)

5. A method that computes arbitrary complex powers to complex numbers to an arbitrary
precision:
BigComplex power(BigComplex base, BigComplex exponent, BigDecimal epsilon)

Figure 2.1 depicts the solution space of the problem. Possible solutions lie in the blue
area. If it existed, an optimal solution with respect to both principles, KISS and GP, would
be shown in the top right corner. And an overly complex solution which is not general at all
would be near the origin. The above solutions are numbered in the graphic. Note that this
is just an informal rating which can be done quickly and doesn’t involve complex metrics.
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Each solution has its advantages and disadvantages. Solution 1 is the easiest. It is simple
to implement and easy to read. On the other hand it is very specific and can only be reused
when exactly the same value is needed. This is the solution that follows KISS to the greatest
extend. It is very simple.

In contrast to that, solution 5 is very generic and can be applied to a broad set of problems.
So it can be reused in many other contexts. The downside is that it is difficult to write and
difficult to use. These are the both extremes when one principle is almost neglected.
Solution 2 represents a bad solution. It is certainly more complex than 1 but does not

provide a more general solution. And it is also less general than 3 but is not simpler.
Figure 2.1 shows the same GP adherence for solutions 1 and 2 and the same KISS adherence
for solutions 3 and 2. Thus the inferior solution 2 is shown deeper in the blue area near the
origin.

The solutions that are commonly implemented in standard math libraries are 3 and 4. They
represent a compromise between simplicity and general applicability. Neither is better than
the other. 4 is more complex but also more powerful. They both represent Pareto-optimal
solutions.

And even solutions 1 and 5 are Pareto-optimal. They may be less common but one could
think of situations when they might be preferred over the others. There may be a case when
the square root of 2 is the only root necessary and a math library containing a square root
function may not be available due to limited memory on a special purpose hardware. Or
there may be complex numbers necessary for a certain scientific computation.
This approach does not tell which of the four good solutions should be chosen (only

solution 2 is sorted out). It is more a way of thinking than a general method. Rating
solutions with real numbers or even visualizing the solution space graphically (like in
figure 2.1) is not necessary and in most cases also not helpful. But stating that the design
decision to make is a question of simplicity versus general applicability is a valuable statement
which helps the designer to find an appropriate solution. The approach is about exploring
the dimensions of the solution space to a given design problem.

2.2.4 Principle Languages
There are not only two but many principles and thus aspects or effects to consider when
designing software. The design space is multi-dimensional. Principle languages interconnect
principles in a way that the consideration of one principle inevitably leads to other principles
to consider. So a principle language helps finding relevant principles for a given design
problem.

The principle discovery starts with one or two starting principles. These starting principles
are typically obvious from the given design problem. For these principles the principle
language lists related principles which are likely to be relevant, too. By repeatedly looking
for related principles a set of characterizing principles is found. As this is meant to be a
lightweight technique, there are not many prescriptions for how to do principle discovery.
The principle discovery process is neither determined, nor deterministic. The order in which
the principles are scanned for their relations is not defined. Principle discovery can be
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aborted anytime at the decision of the designer. When the designer decides that enough
principles have been found to make an informed decision, there is no need to continue
principle discovery. So the characterizing set is also not unique. The idea is to help the
designer; not to impose any unnecessary work.

The characterizing set of principles describes the relevant aspects to consider when deciding
upon the solution for the given design problem. The designer can then informally rate the
possible solutions according to the design principles in the characterizing set. Using this
information the designer can make a sound and comprehensible design decision. It is also
easy to explain the reasons which lead to the choice because they just lie in the principles.

Again this is meant as a guidance not as an obligation. The whole principle discovery, rating,
and decision making typically does not take more than a few seconds and in complicated
cases maybe minutes.
The idea of supporting design is similar to patterns. Principles and patterns, principle

languages and pattern languages aim at giving guidance to designers by codifying experience.
But in contrast to principle languages, pattern languages are normally not learned, but
rather used as a kind of handbook. There is too much detail in patterns (especially the
structure and the different possibilities for variations) which makes memorizing all the details
infeasible.

Principles on the other hand are much simpler. They can be easily memorized as the core
idea of each principle can be stated in one or two sentences. Nevertheless designers who are
new to the principle language can use it as a handbook, too. Over the time the principle
language will be learned by the designers so looking up the principles is not necessary
anymore. The principle language then becomes a real “language”, meaning a common set of
vocabulary that can be used to talk about designs.

2.3 Relation to Other Approaches and Other Research
2.3.1 Design Patterns
There are certain similarities between principles and patterns. As already described in
section 1.2 both are forms of experience reuse but patterns reuse solution schemes whereas
principles reuse judgments upon solutions. Design principles are rules of thumb helping to
make a design decision and design patterns are solution templates that can be applied to a
problem.
Design patterns are not a complete generative design approach, as there is no complete

general-purpose pattern language for software design. This means patterns are rather certain
design tricks which are useful in very particular situations and not an approach generating a
complete design from a set of requirements. So patterns do not replace approaches doing so.
Nevertheless patterns in contrast to principles help generating designs.

Furthermore a judgment is needed on whether to apply a pattern or not. Applying patterns
imposes some drawbacks (typically increased complexity) and patterns can be applied in
different ways and variations. Moreover an overuse of patterns is harmful and results in bad
design. Peter Sommerlad one of the authors of “Pattern-Oriented Software Architecture” [4]
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writes in [7]: “Whenever designers feel the itch to apply a design pattern, I would ask them
first to think. Do they really need its flexibility, and will adding the pattern’s complexity
make the overall system simpler? In addition, I’d ask them to [. . . ] relearn, understand, and
apply the basic principles of good design such as simplicity, low coupling, and high cohesion.”
So an analytic design approach like the one proposed here is needed. Patterns and

principles complement each other. Patterns can give solution schemes and principles help
judging how and whether to apply them.
Principles and patterns are complements. But there are also some other views on this

relationship. First of all design patterns are said to balance “forces” with a force being any
aspect that influences the solution of the given design problem [4]. Principles can be seen as
such forces. They influence the design decision, they drag the design in different directions,
and they need to be balanced in order to find a suitable compromise.
And another view is to see principles as reasoning patterns. The term pattern can be

applied widely. They are proven solution schemes to recurring problems in a certain context.
And in the context of making design decisions there are proven reasoning schemes used for
judging designs. These reasoning schemes are design principles.

2.3.2 Refactorings and Code Smells
Principles also have some similarities with refactorings and code smells. In his book
“Refactoring: Improving the Design of Existing Code” [8] Martin Fowler describes 72
refactorings, i. e. procedures that transform bad code to good code. Such refactorings are for
example “rename method”, “move method”, or “replace method with method object”. These
refactorings are applied whenever the code “smells”, which means it has some characteristic
that marks it bad code. Fowler describes 22 of these code smells. Examples for code
smells are “long method”, “long parameter list”, and “message chains”. Each code smell is
associated with a set of refactorings which cure it.
Each of the smells can be seen as a principle when “avoid” is prepended: “avoid long

methods”, “avoid long parameter lists”, “avoid message chains”, etc. These are fine-grained
principles dealing with a very specific aspects. Some of them are code-centric and are rather
concerned with coding and less with design (for example “(avoid) switch statements”) but
others are clearly about design (e. g. “avoid speculative generality”).
There are also similarities from a process point of view: Code smells tell if a solution is

bad. Principle languages give a kind of reasoning framework to tell good solutions from
bad solutions. So a principle language can be used instead of code smells in order to find
possibilities for design improvement and to initiate refactorings.

2.3.3 Existing Principle Collections
As already stated, principles as such are not new. There are also already principle collections
sometimes even principle catalogs which means, there is a consistent description template
for the principles of the collection (see definition 7).
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The best known principle collection are probably Robert C. Martin’s SOLID principles. In
[9] he describes the fife principles SRP (Single Responsibility Principle), OCP (Open-Closed
Principle), LSP (Liskov Substitution Principle), ISP (Interface Segregation Principle) and
DIP (Dependency Inversion Principle). For each of these principles there is a separate
chapter comprising an in-depth description and examples. All these principles are principles
for object-oriented design. They are broadly applicable and because of this and other books
and articles (e. g. [10], [11]) well known in practice. Later in the book he adds fife further
principles which are concerned with more coarse-grained package structures.

Martin’s principles are not or only loosely interconnected so his collection is not a principle
language. The principles are described in isolation and also meant to be applied in isolation.
The whole approach taken here is different. In Martin’s view principles are similar to
refactorings. They heal what he calls “design smells”. A design smell is an unintended
property of a software design for example needless complexity (i. e. overdesign), fragility (the
design is easy to break), or immobility (the design is hard to reuse) [9, p. 85].
Design smells are very general and difficult to apply as principles in the sense discussed

here. They are rather indications that something is wrong with the design and refactoring is
needed. Martin then uses his principles generatively as a kind of refactoring to improve the
design and thus remove the design smell.

Another principle collection is described in Craig Larman’s “Applying UML and Patterns”
[12]. Larman describes what he calls General Responsibility Assignment Software Patterns
or GRASP for short. Fife of these nine “patterns” are rather principles: Information Expert,
High Cohesion, Low Coupling, Creator, and Controller. These principles are described using
a fixed description template (so GRASP is a principle catalog) and they are even loosely
interconnected in the sense that related principles (or “patters” as they are called in the
book) are listed.
Similarly to Robert C. Martin, Larman uses the principles rather generatively than

analytically. Only for low coupling an high cohesion Larman notes “Use this principle to
evaluate alternatives” [12, pp. 299, 314]. The idea behind GRASP is to help assigning
responsibilities to classes. This is a major part of OOD but not everything.

In “The Pragmatic Programmer” [13] Andrew Hunt and David Thomas give 70 “tips” for
software development, sixteen of which are principles. And nine of these sixteen principles
are concerned with software design. There is no description template and only loose
interconnection by chapter references. Software design is also not the primary topic of the
book so there is no advice on how to use the tips for doing design. There is neither an
analytic, nor a generative design approach but rather the 70 tips are just meant as a concise
summary of the book.
Bertrand Meyer describes 200 principles, rules, precepts and definitions in his book

“Object-Oriented Software Construction” [14]. But only fourteen of them are principles in
the sense discussed here. Meyer mainly describes concepts and usage of his programming
language Eiffel. His book only deals with object-oriented design as this task influences and
is influenced by language constructs. This is the reason why only seven percent of his rules
are relevant to this thesis. There is no description template, no principle relationships and
no description of an approach dealing with the application of principles.
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In “The Art of Unix Programming” [15] Eric S. Raymond describes the Unix philosophy
using 17 principles. Also here is no description template, no relationships and no principle-
based design approach.
Lastly there is also a book about software development principles: “201 Principles of

Software Development” by Alan M. Davis [16]. 26 of the 201 “principles” are about software
design and half of them are principles according to the definition used here. The book is
mainly a large list and contains only one short explanation on every principle.

After the principle language has been presented in chapter 4, section 5.3 compares these
principle collections to the presented language.

Summarizing this, there are plenty of principles known and there are also a few principle
collections. But often the focus is just to collect arbitrary software development knowledge.
The principles are not or only insufficiently interconnected and with the exception of SOLID
there is no guidance on how to use the principles for software design. There is nothing
comparable to a principle language, yet. Also SOLID, which already gives some guidance, is
not a principle language as it takes a different approach and is applicable to fewer design
problems as there are only fife principles.

2.3.4 Laws and Theories Forming a Body of Knowledge
The most systematic principle collection so far can be found in [17]. Endres and Rombach
discuss laws and theories as a body of knowledge for software engineering. Their goal was to
collect empirically verified knowledge about software and systems engineering independent
of any particular engineering approach, technology or way of thinking. This forms a body of
knowledge for practitioners and catalogs existing findings for researchers.

There is a rough classification of findings into laws, hypotheses and conjectures. For laws
there is strong evidence such that they can be assumed true without further need for research.
Hypotheses on the other hand are only tentatively accepted. There may be some evidence
and there may also be some doubt. Lastly conjectures are pure guesses where science is
yet to examine the effect. This categorization is done for two reasons: Firstly practitioners
can use it to judge how much to trust the findings. Laws can be assumed true whereas
hypotheses and conjectures need to be taken with care. And secondly researchers can use
the categorization to focus their research on what is still unknown.
For each law (but not for hypotheses and conjectures) a theory is listed which tries to

explain why the law is valid. This is similar to the rationale a principle description gives.
The purpose is to give an understandable reason for the law.

The work is primary literature research and does not present a particular design ap-
proach, a relationship between the laws or anything else that resembles a principle language.
Nevertheless it is a helpful source for principles. The book lists rules for all aspects of
software engineering, including tasks like verification and requirements definition. Counting
only those which are relevant for software design Endres and Rombach list sixteen laws,
eight hypotheses and two conjectures. These are the ones concerned with system design,
composition, and maintenance, i. e. those tasks where design decisions are made.
But not all of these are principles. Some of these rules are rather phenomenological
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descriptions of effects that need no consideration while making design decisions (e. g. Conway’s
Law which states that a “system reflects the organizational structure that built it” [17,
pp. 81 f.]). Others have a different focus—often management and process planning (e. g.
Lanergan’s Law which sates that the “larger and more decentralized an organization, the
more likely it is that it has reuse potential” [17, p. 76])—or are otherwise not helpful for the
tasks discussed here. Only six laws and two hypotheses could be used as or at least modified
to software design principles.

So Endres and Rombach have a different focus. They concentrate on empirical observations
whereas this thesis is concerned with principles which directly help developers make and
communicate design decisions.

A comparison between the principles collected by Endres and Rombach and the principle
language presented in chapter 4 is given in section 5.3.



3 Towards a Principle Language

3.1 Using a Wiki for Describing Principles
Along this thesis a wiki was used to describe the principles discussed here as well as several
others. A wiki is an ideal tool for describing principles. This is because the very first wiki,
the origin of all wikis, was created by Ward Cunningham as a tool for describing patterns.
“The Wiki” is the home of the Portland Pattern Repository [18]. Later the use of wikis
became more wide-spread. But as the primary idea was to describe and discuss patterns, it
is only natural to use the same tool for describing and discussing principles.

One advantage of wikis is, that they make it easy to link pages so a hypertext is created.
Principle languages precisely are about linking principles and wikis simplify navigating their
web structure. Additionally they can be used to collaboratively describe further principles,
develop further principle languages, and improve existing ones.
One of the goals of this work is, to construct a general-purpose principle language for

object-oriented design. Chapter 4 shows the result. This is an except from the wiki which
includes those principles that are part of the principle language. Beside them there are
several supplementary principles which are also described and linked in the wiki but which
are not directly part of the principle language.

3.2 The Principle Description Template
In order to construct and document a principle language, it has to be defined, how the
single principles should be described. As a principle language is a principle catalog (see
definitions 7 and 8), principles should be described using the same structure. This section
describes how principles are documented in this thesis. The wiki contains more sections
since it is intended to use the wiki on a broader scale. Eventually it will include principles
in other contexts, other principle languages, a glossary, and maybe also pattern descriptions.
This section only deals with the sections relevant to the thesis. The wiki has its own page
explaining the broader wiki template.

3.2.1 Variants and Alternative Names
Each principle may have several alternative names. This may be because the same principle
has been described several times independently. A principle may also evolve over time,
change its name, change its meaning, may be applied to other contexts, etc. So there may be
several names referring basically to the same principle. This also means that the alternative
names may roughly correspond to certain views on the principle. The views may differ
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slightly resulting in certain variations of the principle. Alternative names are listed in this
section and, if necessary, explained.

3.2.2 Principle Statement
The principle statement is basically a concise explanation in one or two sentences. This may
be the original wording or a new one. The main purpose is to give a memorable “definition”
of the principle.

3.2.3 Description
As one or two sentences are never enough to explain a principle in detail, there is a separate
section describing what the principle means and how it is applied.

3.2.4 Rationale
Principles normally are not hard rules but rather heuristics or rules of thumb. So there is no
formal proof showing that the principle is correct in each and every situation. Nevertheless
there needs to be a reason for the principle, meaning some rationale explaining why it is valid.
In order to assess whether the principle is applicable to a certain problem, the rationale can
be used. If the reasons given in this section apply to the given problem, the principle can be
applied.

3.2.5 Strategies
The main idea behind principles is to assess solutions and not to construct solutions.
Nevertheless applying principles may lead to the conclusion that a solution is not as good as
it could be. This section lists strategies that can be used to transform a given solution in a way
that the result better adheres to the principle. So the principle language provides guidance
beyond the pure assessment of design solutions. A generative approach for constructing
solutions (see section 2.1.1) is nevertheless necessary.

3.2.6 Caveats
This section lists warnings on how not to use this principle. Disadvantages are partly treated
below in the section “contrary principles”. Nevertheless there are sometimes helpful remarks
on pitfalls and wrong usages that cannot be described using contrary principles or that are
otherwise noteworthy. This section discusses these issues.

3.2.7 Origin
This section describes where the principle comes from, where it has been prominently
described, etc.
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3.2.8 Evidence
Apart from the rationale there may be different evidence that the principle is valid:

Proposed If the principle is neither examined, nor accepted it is marked proposed.

Examined A principle is marked examined if and only if it has been subject to scientific
research showing evidence beyond constructed examples. Note that this state is called
“examined” and not “proven” as the examination may have limitations and the principle
may still be questioned. If the scientific examination supports the principle, it may be
considered state of the art.

Accepted A principle is marked accepted if and only if it is widely used in practice. This is
assumed if there is a publication widely known to practitioners which describes the
principle. So an accepted principle can be regarded state of the practice.

Examined and Accepted A principle may be both examined and accepted.

Questioned Independent of whether a principle is proposed, examined, accepted or examined
and accepted, a principle may also be questioned. A principle is questioned if there
are comprehensible reasons that the principle may be wrong or misleading. Note that
the principle itself needs to be questioned. It is not sufficient that keeping the rule
may inevitably also have some negative effects expressed by another principle. This is
normal due to the nature of the principle definition used here. A principle is questioned
if there is doubt concerning the positive effect it claims to have.

3.2.9 Relation to Other Principles
There are certain relationships among principles. This section lists and explains them so the
consideration of one principle inevitably leads to other principles that can be considered.
An important aspect of this is that the pure purpose of this list of relationships is to give a
clear navigation path to the principles that should be considered next. These relationships
are fuzzy and sometimes not valid in every respect. But this is not a problem since their
purpose is to be practically useful. A purely “academic” analysis of the principles which
ignores their practical usage is not intended.

Generalizations

A generalization of a principle is another principle that can be applied in a broader context.
Generalizations may be considered in addition or instead of the principle. If a principle does
not fit well to the problem, a generalization of it may fit better. It may also add further
reasons and a broader view for the assessment of possible solutions.
The principle is always a specialization of its generalizations. There may also be several

generalizations, for example when a principle is a consequence of two others.
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Specializations

A specialization is a more concrete principle that either applies in a narrower context or
is some kind of corollary. Specializations may be considered in addition or instead of the
principle. If a principle does not fit well to the problem, a specialization of it may fit better.
It may be easier to apply and more tailored to specific kinds of problems.

The principle is always a generalization of its specializations and naturally there may be
several specializations.

Contrary Principles

Following the principle may have a negative impact on aspects addressed by other principles.
These contrary principles are listed here and the consequence is explained. Like there is no
guarantee that the principle itself is valid in every case, there is also no guarantee that there
is the negative effect concerning the other principles. There is just a high probability that
there is this effect. Therefore these principles should also be considered if this one is applied.

As the relationships are purely for navigational purposes, the “is-contrary-to” relationship
is not necessarily symmetric.

Complementary Principles

A principle is always a reduction of the given design problem to a very specific aspect or
effect. Other principles have to be considered too in order to have a full picture of the
design problem. Sometimes when one principle is considered, another one is very likely to
be relevant too despite not being contrary. This is then a complementary principle. As for
the other relations this is just a tendency and a purely navigational relationship. In practice
a complementary principle may also be contrary or not applicable.
Similar to “is-contrary-to“, the “is-complementary-to” relationship is not necessarily

symmetric.

3.2.10 Examples
One or more self-contained examples explains how the principle distinguishes “good” and
“bad” solutions with respect to the aspect the principle is about or exemplifies certain
relationships, strategies, caveats, etc.

3.3 Constructing a Principle Language
There are tens and maybe hundreds of principles. In order to form a concise vocabulary of
principles for communicating about software design a manageable subset is needed. Such a
subset forming a principle language can be taught and learned more easily. But constructing
such a principle language comprises some complicated tasks and considerations.

A principle language should cover most of the arising design problems in the context it is
built for. For this thesis a principle language for object-oriented design (OOD) has been
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(a) (b)

Figure 3.1: Transitive relationships: (a) without (b) with shortcut.

constructed. So in this case most of the design problems arising when doing OOD should be
covered. In general this means that the principle language has be be large enough to have
this kind of coverage so but otherwise as small as possible so it is still learnable.
In order to find a suitable compromise a tradeoff between granularity and utility has to

be made. Michael Jackson writes on methods: “It’s a good rule of thumb that the value
of a method is inversely proportional to its generality.” [19] The same can be said about
principles: Very general principles are broadly applicable to a large variety of problems. But
applying them can be difficult. The more precise a principle is the more helpful it will be
regarding a certain class of problems. But this also means that a specialized principle only
applies to a fewer problems.
Finding the right set of principles is very important but the most complex task when

creating a principle language is finding the correct, meaning the most helpful, relationships.
The principle language which is presented in chapter 4 comprises 19 principles but 93
relationships. And even very early versions of the principle language contained almost the
same principles as now. Only three principles changed. On the other hand about half of the
relationships changed over time, some even several times.

Constructing the principle language requires considering every possible relationship between
the given set of principles and answering the following question: When considering principle
A, do I also want to consider principle B? It is not enough to look at the principles themselves
but it has to be envisioned in which situations one might consider principle A and wants to
navigate to principle B.

This can be considered one of the key findings of this thesis: When a principle language is
to be constructed, not the actual mathematically-clear relationships (if there are any) are
important. The important aspect about the relationships is how they are used.

Moreover transitivity has to be considered in some special way: Navigating the principle
language is to some extend transitive. Suppose there are the principles A, B and C.
Considering A may lead to B and considering B may lead to C. In such a case there is the
question whether or not to create a “shortcut-relationship” directly going from A to C. See
figure 3.1 for illustration. The difference is that in the first case C is only considered when B
is considered. In the second case the shortcut creates a direct navigation path from A to C.
So C can be considered without having B. Here is also the question how a developer would
want to navigate the principle language. It depends on the possible design decisions and not
merely on the principles.
Next the type of the relationship has to be determined. It can be generalization/special-
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ization, is-contrary-to or is-complementary-to. This is also not clear by just looking at the
principles. A principle which is contrary in one situation may be complementary in another
one. So it has to be judged which relationship type reflects the connection best.
Another possibility would be not to use relationship types and just use generic “may-

navigate-to” relationships. So the relationship would just be a “see also” similar to the
currently used is-complementary-to. This is possible but some information is lost. Gen-
eralization/specialization relationships indicate that the related principle can replace the
currently considered one. And is-contrary-to relationships are generally more important
than others as they point to possible drawbacks. For these reasons relationship types are
used in the principle language created for this thesis.



4 A Principle Language for Object-Oriented Design

4.1 Overview
In the following a principle language for object-oriented design will be presented. Its purpose
is to help the designer make sound design decisions. This comprises the choice upon how
to modularize the software, which responsibilities to assign to these modules, and how
modules should interact with each other. It is not the purpose of the principle language to
help designing algorithms, to structure requirements, to do user interface design, etc. The
principle language also aims to be used with the object-oriented programming paradigm.
For other purposes, contexts and programming paradigms, other sets of principles and other
principle languages would be necessary although some of the principles described here could
also be part of those principle languages.
The principle language consists of 19 principles which can roughly be grouped into four

categories: general principles, modularization principles, module communication principles,
interface design principles and internal module design principles. Table 4.1 in page 25 lists
the principles and figure 4.1 shows the relationships between them.

4.2 The Wiki
All the principles have been described in a wiki. The wiki is designed much more general
than this thesis as it is planned to continue using and working on it. In the future it will
contain principles on other levels of abstraction, non-principles (rules which look similar to
principles but are not), a glossary, and eventually maybe also patterns and anti-patterns.
It already contains several principles which haven’t become part of the language. Because
of this broader design of the wiki, it also contains some more sections than the principle
description template showed in section 3.2 and also more references to related papers, books,
and online resources. The goal of the wiki is to create a platform for collaborative work on
principles and principle languages. It will go online shortly after this thesis has been handed
in.
The following sections describe the principles of the principle language in more detail.

This is a snapshot from the wiki reduced to those principles which became part of the
language. The principle descriptions vary in detail and some sections lack content. These
empty sections are not removed here in order to show that this is a part of a wiki which
continues in development. Research on principle languages is by far not at its end. It has
just started and there are still plenty of research possibilities (see chapter 7). The wiki is
designed to stay a part of that development.

23
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Figure 4.1: Overview showing the principle language
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Table 4.1: The Principles of the Principle Language
Principle Page
General Principles
→4.3.1 Murphy’s Law (ML) 25
→4.3.2 Keep It Simple Stupid (KISS) 30
→4.3.3 More Is More Complex (MIMC) 35
→4.3.4 Don’t Repeat Yourself (DRY) 38
→4.3.5 Generalization Principle (GP) 40
→4.3.6 Rule of Explicitness (RoE) 42
Modularization Principles
→4.4.1 Model Principle (MP) 44
→4.4.2 High Cohesion (HC) 48
→4.4.3 Encapsulate the Concept that Varies (ECV) 50
Module Communication Principles
→4.5.1 Tell, don’t Ask/Information Expert (TdA/IE) 53
→4.5.2 Low Coupling (LC) 55
→4.5.3 Dependency Inversion Principle (DIP) 58
Interface Design Principles
→4.6.1 Easy to Use and Hard to Misuse (EUHM) 61
→4.6.2 Principle of Least Surprise (PLS) 63
→4.6.3 Uniformity Principle (UP) 65
Internal Module Design Principles
→4.7.1 Information Hiding/Encapsulation (IH/E) 67
→4.7.2 Invariant Avoidance Principle (IAP) 70
→4.7.3 Liskov Substitution Principle (LSP) 74
→4.7.4 Principle of Separate Understandability (PSU) 76

4.3 General Principles
4.3.1 Murphy’s Law (ML)
Variants and Alternative Names

• Design for Errors[16]

Principle Statement

Whatever can go wrong, will go wrong. So a solution is better the less possibilities there are
for something to go wrong.
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Description

Although often cited like that, Murphy’s Law actually is not a fatalistic comment stating
“that life is unfair”. Rather it is (or at least can be seen as) an engineering advice to design
everything in a way that avoids wrong usage. This applies to everything that is engineered
in some way and in particular also to all kinds of modules, (user) interfaces and systems.
Ideally an incorrect usage is strictly impossible. For example this is the case when the

compiler will stop with an error if a certain mistake is made. And in case of user interface
design, a design is better when the user cannot make incorrect inputs as the given controls
won’t let him.

It is not always possible to design a system in such a way. But as systems are built and
used by humans, one should strive for such “fool-proof” designs.
There are different kinds of possible errors that can and according to ML eventually

will occur in some way: Replicated data can get out of sync, invariants can be broken,
preconditions can be violated, interfaces can be misunderstood, parameters can be given in
the wrong order, typos can occur, values can be mixed up, etc.
Note that Murphy’s law also applies to every chunk of code. According to the law the

programmer will make mistakes while implementing the system. So it is better to implement
a simple design, as this will have fewer possibilities to make implementation mistakes.
Furthermore code is maintained. Bug-fixes will be necessary and present functionality will be
changed and enhanced so every piece of code will potentially be touched in future. Hence a
design is better the fewer possibilities there are to introduce faults while doing maintenance
work.

Rationale

Systems are built and used by humans. And as humans always will make mistakes, there
always will be some possibilities for a certain mistake. So if some mistake is possible,
eventually there will be someone who makes this mistake. This applies likewise to system
design, implementation, verification, maintenance and use as all these tasks are (partly)
carried out by humans.

This means the fewer possibilities there are that a mistake is made, the fewer there will be.
As mistakes are generally undesirable, a design is better when there are fewer possibilities
for something to go wrong.

Note that ML does not claim that everything constantly fails unless there is no possibility
to do so. It simply says that statistically in the long run a system will fail if it can.

Strategies

This is a very general principle so there is a large variety of possible strategies to adhere
more to this principle largely depending on the given design problem:

• Make use of static typing, so the compiler will report faults
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• Make the design simple, so there will be fewer implementation defects (see →4.3.2 Keep
It Simple Stupid (KISS))

• Use automatic testing to find defects

• Avoid duplication and manual tasks, so necessary changes are not forgotten (see
→4.3.4 Don’t Repeat Yourself (DRY))

• Use polymorphism instead of repeated switch statements

• Use the same mechanisms wherever reasonably possible (see →4.6.3 Uniformity Prin-
ciple (UP))

• Use consistent naming and models throughout the design (see →4.4.1 Model Principle
(MP))

• Avoid preconditions and invariants (see →4.7.2 Invariant Avoidance Principle (IAP))

• Use assertions to detect problems early

• ...

Caveats

See section contrary principles.

Origin

The exact wording and who exactly coined the term, remains unknown. Nevertheless it can
be stated that its origin is an experiment with a rocket sled conducted by Edward A. Murphy
and John Paul Stapp. During this experiment some sensors have been wired incorrectly.
A more accurate quote might read something like this: “If there’s more than one possible
outcome of a job or task, and one of those outcomes will result in disaster or an undesirable
consequence, then somebody will do it that way.” A detailed version of the history of the
experiment and the law can be found in [20].

Evidence

• Accepted The principle is widely known and it’s validity is assumed. See for example
the Jargon File [21]. Nevertheless sometimes it is rather used as a kind of joke instead
of an design advice.

Furthermore every defect in any system is a manifestation of ML. If there is a fault then
obviously something went wrong. The correlation between the number of possibilities for
introducing defects and the actual defect count can be regarded trivially intuitive.
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Relations to Other Principles

Generalizations

Specializations

• →4.3.4 Don’t Repeat Yourself (DRY): Duplication is a typical example for error
possibilities. In case of a change, all instances of a duplicated piece of information
have to be changed accordingly. So there is always the possibility to forget to change
one of the duplicates. DRY is the application of ML to duplication.

• →4.6.1 Easy to Use and Hard to Misuse (EUHM): Because of ML an interface should
be crafted so it is easy to use and hard to misuse. EUHM is the application of ML to
interfaces.

• →4.6.3 Uniformity Principle (UP): A typical source of mistakes are differences. If
similar things work similarly, they are more understandable. But if there are subtle
differences in how things work, it is likely that someone will make the mistake to mix
this up.

• →4.7.2 Invariant Avoidance Principle (IAP): Invariants are statements that have to
be true in order to keep a module in a consistent state. ML states that eventually an
invariant will be broken resulting in a hard to detect defect. IAP states that invariants
should therefore be avoided. So IAP is the application of ML to invariants.

Contrary Principles

• →4.3.2 Keep It Simple Stupid (KISS): On the one hand a simpler design is less prone
to implementation errors. In this aspect KISS is similar to ML. On the other hand it is
sometimes more complicated to make a design “fool-proof” so usage and maintenance
mistakes are prevented. In this aspect KISS is rather a contrary principle. Both applies
at the same time so a tradeoff has to be made whether correct implementation or
correct usage and maintenance are more important in the given case. This means, it is
necessary to consider KISS in addition to ML in order to find a suitable compromise.
See example 1: parameters.

Complementary Principles

Examples

Example 1: Parameters Suppose there are two methods of a string class replaceFirst() and
replaceAll() which replace the first or all occurrences of a certain substring, respectively.

The following method signatures are a bad choice:
replaceFirst ( String pattern , String replacement )
replaceAll ( String replacement , String pattern )
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Eventually someone will mix up the order of the parameters leading to a fault in the software
which is not detectable by the compiler.

So it is better to make parameter lists consistent:
replaceFirst ( String pattern , String replacement )
replaceAll ( String pattern , String replacement )

This is less error prone. When for example a call to replaceFirst() is replaced by a call
to replaceAll(), one cannot forget to exchange the parameters anymore. This is how is is
done in the Java API [22].
But here still one could mix up the two string parameters. Although this is less likely,

as having the substring to look for first is “natural”, such a mistake is still possible. An
alternative would be the following:
replaceFirst ( Pattern pattern , String replacement )
replaceAll ( Pattern pattern , String replacement )

Here both methods expect a Pattern object instead of a regular expression expressed in a
string. Mixing up the parameters is impossible in this case as the compiler would report
that error. On the other hand using these methods becomes a bit more complicated:
"This are a test.". replaceFirst (new Pattern ("are"), "is");
1 instead of
"This are a test.". replaceFirst ("are", "is");

→4.3.2 Keep It Simple Stupid (KISS) is about this disadvantage.

Example 2: Casts and Generics Another example for the application of Murphy’s Law would
be the avoidance of typecasts:
List l = new ArrayList ();
l.add (5);
return ( Integer )l.get (0) * 3;

This works but it makes a cast necessary and every cast circumvents type checking by the
compiler. This means it is theoretically possible that during maintenance someone will make
a mistake and store a value other than Integer in the list:
l.add("7");

Murphy’s Law claims that however unlikely such a mistake might seem, eventually someone
will make it. So it is better to avoid it. In this case this could be done using Generics:
List <Integer > l = new ArrayList <Integer >();
l.add (5);
return l.get (0) * 3;

1 Note that in the Java API it would rather be Pattern.compile() instead of new Pattern(); see [23]
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Here this mistake is impossible as the compiler only allows storing integers.
Note that the typecast is rather a symptom than the actual problem here. The problem

is, that the List interface is not generic and the symptom is the typecast. The reason for
this flaw is, that the List interface predates the introduction of generics in Java.

Example 3: Date, Mutability/Aliasing In Java the classes Date [24] as well as the newer
Calendar [25] are mutable which means the reference semantics of Java objects may cause
unintended alternations of date values. Eventually someone will copy the reference to a date
object instead of copying the object itself, which is usually a mistake when programming
with dates.
Date date1 = new Date (2013 , 01, 16);
Date date2 = date1;
System .out. println (date1); // Sun Feb 16 00:00:00 CET 3913
System .out. println (date2); // Sun Feb 16 00:00:00 CET 3913

5 date1. setMonth (2);
System .out. println (date1); // Sun Mar 16 00:00:00 CET 3913
System .out. println (date2); // Sun Mar 16 00:00:00 CET 3913

Furthermore as can be seen in the code above, the month value counterintuitively is
zero-based, which results in 1 meaning February. This obviously is another source for
mistakes.
Because of these and several other flaws in the design of the Java date API, most of the

methods in Date are deprecated and also the newer Calendar API will be replaced by a new
API [26] in Java 8.

4.3.2 Keep It Simple Stupid (KISS)
Variations and Alternative Names

• (Rule of) Simplicity

• KISS may also mean “Keep it short and simple”, “keep it simple and straightforward”,
“keep it smart and simple”, etc. A large amount of variations exists.

Remarks: “Stupid” may be interpreted as an adjective or a noun. Compare the two
variants “keep it simple and stupid” vs. “keep it simple, stupid!”. Despite all these alternative
names the general idea of the KISS principle is always the same.

Principle Statement

A simple solution is better than a complex one—even if the solution looks stupid.

Description

The KISS principle is about striving for simplicity. Modern programming languages, frame-
works and APIs have powerful means to create sophisticated solutions for various kinds of
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problems. Sometimes developers might feel tempted to write “clever” solutions that use all
these complex features. The KISS principle states that a solution is better when is uses less
inheritance, less polymorphism, fewer classes, etc.

A solution that follows the KISS principle might look boring or even “stupid” but simple
and understandable. The KISS principle states that there is no value in a solution being
“clever” but in one being easily understandable.

This does not mean that features like inheritance and polymorphism should not be used
at all. Rather they should only be used when they are necessary or there is some substantial
advantage in using them.

Rationale

A simpler solution is better than a complex one because simple solutions are easier to maintain.
This includes increased readability, understandability, and changeability. Furthermore writing
simple code is less error prone.

The advantage of simplicity is even bigger when the person who maintains the software is
not the one who once wrote it. The maintainer might also be less familiar with sophisticated
programming language features. So simple and stupid programs are easier to maintain
because the maintainer needs less time to understand them and is less likely to introduce
further defects.

Strategies

This is a very general principle so there is a large variety of possible strategies to adhere
more to this principle largely depending on the given design problem:

• Avoid inheritance, polymorphism, dynamic binding and other complicated OOP con-
cepts. Use delegation and simple if-constructs instead.

• Avoid low-level optimization of algorithms especially when involving Assembler, bit-
operations, and pointers. Slower implementations will work just fine.

• Use simple brute-force solutions instead of complicated algorithms. Slower algorithms
will work in the first place.

• Avoid numerous classes and methods as well as large code blocks (see →4.3.3 More Is
More Complex (MIMC))

• For slightly unrelated but rather small pieces of functionality use private methods
instead of an additional class.

• Avoid general solutions needing parameterization. A specific solution will suffice.

• ...
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Caveats

See section contrary principles.

Origin

The principle was coined by the American engineer Kelly Johnson referring to the requirement
that a military aircraft should be repairable with a limited set of tools under combat conditions
[27].

The principle of striving for simple solutions sometimes is also called “(rule of) simplicity”[15]
which was also prominently stated by Tony Hoare in his Turing Award lecture: “I conclude
that there are two ways of constructing a software design: One way is to make it so simple
that there are obviously no deficiencies and the other way is to make it so complicated that
there are no obvious deficiencies. The first method is far more difficult.”[28]

Evidence

Accepted: This principle is widely known and accepted in practice. See for example Jargon
File: KISS Principle [29].

Examined: While the preference for simple solutions can be considered trivially intuitive,
there has been some work relating simplicity or rather complexity and certain quality
attributes. But as there is no universally applicable complexity metric and not even a
commonly agreed upon clear definition of simplicity, research is bound to examine certain
aspects of KISS independently.

The following hypotheses can be stated:

• Simpler solutions are faster to implement.

• Simpler solutions yield less implementation faults (which reduces testing effort).

• Simpler solutions are easier to maintain, i. e. detecting and correcting defects is more
effective and efficient.

• Simpler solutions yield more reliable software, i. e. less defects show up after releasing
the software.

All these hypotheses can be examined with respect to different complexity metrics.
Hypothesis 1 can be regarded true by definition. If the solution cannot be implemented

fast, it is not simple.
Though hypotheses 2 and 3 are not true by definition but they can be regarded intuitively

clear. Nevertheless there is some research. In [30] a system was improved in two steps
resulting in three variants of the same system. Several metrics show that the improvements
reduced complexity. 36 programmers with varying experience conducted three different
maintenance tasks and their performance was measured. The results indicate that the
improvements also improved maintainability. Several other studies support the correlation
between complexity and maintainability [31].
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Furthermore software cost estimation techniques are partly based on complexity judgments
[32]. So complexity—although this normally relates the complexity of the problem and
not to the complexity of the solution—is a known cost factor which may be accounted to
maintenance.
Lastly hypothesis 4 is likely to be false. Several studies relating complexity metrics and

post-release reliability show that module size in lines of code predicts reliability at least as
good as the McCabe metric (also called cyclomatic complexity)—see [17, p. 168ff.]. Assuming
cyclomatic complexity correctly depicts the complexity of a module, reliability should not
be the reason for applying KISS.

Relations to Other Principles

Generalizations

Specializations

• →4.3.3 More Is More Complex (MIMC): KISS states that one should strive for
simplicity. MIMC makes this more concrete stating that more of anything (methods,
classes, lines of code, ...) increases complexity.

Contrary Principles Note that many principles are contrary to KISS. This means that it
is worthwhile to consider KISS when considering one of those. Nevertheless this does not
mean that this is true the other way around. When considering KISS, one wouldn’t want to
consider all principles that have complexity as a disadvantage. So here are those needing
consideration:

• →4.3.5 Generalization Principle (GP): This is the directly converse principle. A
solution that is generally applicable typically is not simple anymore.

• →4.3.1 Murphy’s Law (ML): The ultimate reason behind KISS is to increase maintain-
ability and reduce the introduction of defects. But following KISS blindly by always
using the simplest solution may also lead to reduced maintainability when Murphy’s
Law is not considered.

• →4.4.1 Model Principle (MP): There are often simpler ways to build a software system
than to model and mirror the real world behavior, which frequently means having more
objects and more complicated structures. Nevertheless it is advisable to do so anyway.

Complementary Principles

Examples

Example 1: Fuzzy Simplicity Simplicity is a blurry, partly subjective measure. Sometimes it
is difficult to tell what is simpler. The following example shows that:
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public String weekday1 (int dayOfWeek )
{

switch ( dayOfWeek )
{

5 case 1: return " Monday ";
case 2: return " Tuesday ";
case 3: return " Wednesday ";
case 4: return " Thursday ";
case 5: return " Friday ";

10 case 6: return " Saturday ";
case 7: return " Sunday ";
default : throw new IllegalArgumentException (" dayOfWeek must

be in range 1..7");
}

}
15

public String weekday2 (int dayOfWeek )
{

if (( dayOfWeek < 1) || ( dayOfWeek > 7))
throw new IllegalArgumentException (" dayOfWeek must be in

range 1..7");
20

final String [] weekdays = {
" Monday ", " Tuesday ", " Wednesday ", " Thursday ", " Friday ", "

Saturday ", " Sunday "};

return weekdays [dayOfWeek -1];
25 }

Both methods do exactly the same thing. They return a string representing the weekday.
Just the implementation is different. Both versions may be seen as simpler than the other
depending on the view taken. weekday2 has less statements and less execution branches.
Complexity metrics measuring these aspects (e. g. the cyclomatic complexity) will therefore
prefer weekday2.

On the other hand weekdays1 uses less language features (just switch, return, and exceptions
whereas weekdays2 needs if, arrays, arithmetic, return, and exceptions). Furthermore in
weekdays1 the relation between input and output can be seen directly and it’s clear how it
works by just seeing the method. But for understanding weekday2 there are more details
to think about. This is especially true for the range check at the beginning and the index
computation in the return statement. Clearly this is not particularly difficult but these are
aspects which are more difficult than in the other version of the method.

So it’s not objectively clear which of the two implementations KISS prefers without saying
which complexity metric to apply. But this ambiguity is not a problem since principles are
not meant to be unambiguous and objective. Eventually a human developer has to decide
which solution to implement and the principles only give guidelines.
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4.3.3 More Is More Complex (MIMC)
Variants and Alternative Names

Principle Statement

More is more complex.

Description

Having more lines of code, methods, classes, packages, executables, libraries etc. always
means also to have more complexity (which is bad). This means that given the complexity of
the problem is fixed, a suitable compromise for the number of methods, classes, etc. has to be
found. Reducing the number of statements per method typically results in the introduction
of further methods. Reducing the number of methods per class can be achieved by dividing
the class into several smaller classes, etc.

There is both: too large modules (i. e. under-modularization) and too small modules (i. e.
over-modularization). Either there is too much complexity in a module (MIMC applied to
one module) or there is too much complexity between the modules (MIMC applied to the
number of modules).

Note that it is actually not the number of lines, methods, classes, etc. that is relevant but
the effective number of items that have to be kept in mind for the purpose of understanding.
So reducing the number of lines by placing several statements in one line does not help.
Neither the introduction of an additional obvious private method will do any harm. MIMC
is just a rule of thumb stating that the introduction of further modules (and the like) usually
has a higher complexity as a drawback.

Rationale

The capabilities of the human mind are certainly limited. If it is necessary to keep a large
amount of modules or lines of code in mind, it is difficult to understand. Furthermore if
a module is large, it takes a long time to read (and thus to comprehend). And if there
are many modules, looking for a particular module takes a long time. And the longer the
searching process takes, the more one will have forgotten what has been read previously.
This results in worse readability, understandability and this maintainability.

Strategies

• Avoid many modules
– Merge several modules into one
– Don’t introduce a new module but put the functionality into another module

• Avoid big modules
– Divide large modules in several smaller ones
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Caveats

• Note that Miller’s Law [33] stating that the human mind can remember “seven plus or
minus two items” at at time is often cited in this context but it is doubtful if and to
what extend it applies to design.

• Note that this principle is contrary to itself. Given a desired functionality a certain
level of complexity in inevitable. This leads in the extremes either to a large amount
of small classes or a large amount of code in a fewer class. The same applies on other
levels like number and size of methods, etc. So there is always a tradeoff between
MIMC and itself applied to different aspects of the software system.

See also section contrary principles.

Origin

The phrase “more is more complex” is new but can be regarded trivially intuitive to every
developer. There is also some research concerning certain aspects of MIMC. See section
evidence.

Evidence

Examined: There is some research relating module size to certain quality attributes like
maintenance cost, error density, etc. Basili and Perricone studied maintenance data of
Fortran programs for aerospace applications [34]. They found that the smaller modules had
a higher error density than the larger ones. At first this seems to contradict MIMC. But
assuming there is a certain essential complexity of the problem, this complexity has to be
implemented somehow. Either this leads to a few large modules or many smaller ones. In
the latter case the complexity is in the relationships and interactions between the modules
instead of the modules themselves. So too small modules result in more modules and more
complex communication among them. Other studies seem to confirm this[31].

This phenomenon that the defect density is high for small modules but also rises for large
modules is called the “Goldilocks Conjecture”. As a result there is an optimal module size
which is neither too small, nor too big. Several publications claim to have found this optimal
module size [35]. Depending on the programming language used, these values typically are
claimed to be a few hundred lines of code. Note that most of these studies are in the context
of procedural programming.

This sounds intuitive but the Goldilocks Conjecture is disputed. Some point out that the
negative correlation between defect density and size is just a mathematical artifact [36][35]
and that there are also other methodological problems with these studies [37]. There is also
data which is not explainable by defect models based on the Goldilocks Conjecture [37].
The relationship between module size and defect proneness is complex and not clear.

Furthermore modularization is not only a task in terms of module size. The more interesting
aspect is how to assign responsibilities to modules. So apart from module size there are
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many other aspects influencing modularization (see especially →4.4.1 Model Principle (MP),
→4.5.2 Low Coupling (LC), and →4.4.2 High Cohesion (HC)) which makes it hard to isolate
the pure effect of size.

This is an important research question but as MIMC is just a qualitative rule of thumb (just
as the other principles are). So the principle can be deemed helpful despite the Goldilocks
Conjecture being disputed.

As a specific aspect of MIMC, complexity through deep inheritance relations is known to
reduce effectiveness and efficiency of maintenance. There are controlled experiments showing
this[38][39]. On the other hand these results are limited as there may be many factors
which are neglected by the experiment. Most notably in these experiments maintenance
tasks where carried out on systems with artificially constructed inheritance hierarchies. It is
undisputed hat there are good ways and bad ways of using inheritance. And it is doubtful
that there are several equally good solutions for the same problem only differing in the depth
of inheritance. So there is some evidence but no “proof” that deep inheritance hampers
maintenance.
Questioned: The Goldilocks Conjecture, which can be seen as an aspect of MIMC, is

disputed. See above.

Relations to Other Principles

Generalizations

• →4.3.2 Keep It Simple Stupid (KISS): MIMC states that having more modules, etc.
leads to more complexity. KISS on the other hand is about the avoidance of every
form of complexity.

Specializations

Contrary Principles Note that many principles are contrary to MIMC as they favor the
introduction of additional modules. This means that it is worthwhile to consider MIMC
when considering one of those. Nevertheless this does not mean that this is true the other
way around. When considering MIMC, one wouldn’t want to consider all principles that
have complexity as a disadvantage. So here are those needing consideration:

• More Is More Complex (MIMC): Changing a design to adhere to the MIMC principle
may always lead to more complexity concerning another aspect of the system. For
example reducing the amount of code in a large method is typically achieved by the
introduction of further methods. So there is always a tradeoff between this principle
and itself.

• →4.4.2 High Cohesion (HC): Not introducing further modules typically leads to a
lower cohesion.

Complementary Principles
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Examples

4.3.4 Don’t Repeat Yourself (DRY)
Variants and Alternative Names

• Single Point of Truth (SPOT)

• Single Source of Truth (SSOT)

Principle Statement

“Every piece of knowledge must have a single, unambiguous, authoritative representation
within a system.”[13]

Description

DRY not only states that code duplication shall be avoided. Rather DRY is a general rule
that states that if there is duplication, there shall be some “single source of truth”. Also when
one piece of information has several representations (like an object structure corresponding
to a database schema) DRY demands one and only one representation being the definitive
one. The other representations have to be generated automatically. The “one and only”
representation can be one of the used representations or alternatively a third one.

Rationale

If there are several representations of the same information (be it code or any other form of
information), all of them have to be maintained separately while changing at the same time.
There is the danger that at some point in time the different representations diverge which is
a fault. But if there is a single source of truth, there is only one place where changes have to
be applied. Then the representations cannot diverge.

Strategies

• Add a new invokable module (a function, a method, a class, etc.) instead of duplicating
code

• Use code generation when information has to be represented in multiple forms

• Use polymorphism to avoid repeatedly enumerating a set of possible solutions in if or
switch statements

Caveats

See section contrary principles.
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Origin

Andrew Hunt and David Thomas: The Pragmatic Programmer: From Journeyman to Master
[13]

Evidence

• Examined: There is extensive research on code cloning, its reasons, automatic detection
of code clones, their evolution, etc. In [40] Chanchal Kumar Roy and James R. Cordy
present a 115 page survey on the state of research as of 2007. Many unanswered
questions remain and research is still ongoing. In 2009 Juergens et al. analyzed fife
systems written in C#, Cobol and Java each between around 200 and 500 kLOC [41].
They identified clones and intentionally and unintentionally inconsistent changes to
them. They then related the faulty clones to them and came to the expected conclusion
that clones are changed inconsistently and that this results in faults. So at least the
part of DRY about code duplication is supported by research findings.

• Accepted: It is generally agreed upon that code duplication is to be avoided. But the
broader meaning of DRY which results in the heavy use of code generators is often
not considered. On the other hand The Pragmatic Programmer is a well known book
which makes DRY a well-known and accepted principle.

Relations to Other Principles

Generalizations

• →4.3.1 Murphy’s Law (ML): Duplication is a typical example for error possibilities. In
case of a change, all instances of a duplicated piece of information have to be changed
accordingly. So there is always the possibility to forget to change one of the duplicates.
DRY is the application of ML to duplication.

Specializations

Contrary Principles

• →4.3.2 Keep It Simple Stupid (KISS): Especially code generators can be very complex.

Complementary Principles

• →4.3.5 Generalization Principle (GP): A generalized solution avoids duplication.
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Examples

4.3.5 Generalization Principle (GP)
Variants and Alternative Names

• Build Generality into Software [16]

• Abstractions Live Longer than Details [13]

Principle Statement

A generalized solution, that solves not only one but many problems, is better than a specific
solution.

Description

There are various ways to make a solution more generally applicable. In the simplest form
this can be done by introducing a method with appropriate parameters. Other possibilities
are classes, parametric types, callbacks, hook methods, etc.

A general solution abstracts from the specific tasks and solves a superset of them. Param-
eterization of some kind is used to specify what has to be done in a given situation.

A module can be more general than another one. But there are two aspects of this: First of
all there is functionality. If module A can do the same as module B plus something more then
A is more general. The second aspect is the one of what has to be done in order to exploit
the generality. An ideal case would be that nothing has to be done and the module just
does more. Other possibilities are that a configuration file has to be changed, an attribute
has to be set, an invocation parameter has to be adjusted, etc. The least general possibility
would be a module which can be changed easily. This is still better than a rigid module but
less general than modules which do not need such changes. This form of generality is often
rather called “flexibility” [42].

Rationale

Specific solutions tend to be fragile. When requirements change, a specific solution might
not fulfill them anymore. In contrast to that a more general solution is more stable so there
will be less need to change it.

Moreover a generalized solution can be reused in a variety of other situations. A specific
solution can only be reused when exactly the same requirements appear again. So a general
solution is much more reusable.

Strategies

• Make modules configurable at runtime or deployment time by using configuration files.
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• Use parameterizable modules (method parameters, object attributes, parametric types,
etc.)

• Use constants

• Find suitable abstractions

Caveats

Making a module (typically a layer, a subsystem or an API) too general may lead to the
module mirroring the functionality of the underlying platform without adding a benefit but
only complexity.

Another problem is the turing tarpit [43]. This means that the module is so general that
arbitrarily complex tasks can be performed but those of interest, meaning the rather simple
tasks that occur over and over again, are also difficult to do. This is a violation of the
→4.6.1 Easy to Use and hard to Misuse (EUHM) principle.
See also section contrary principles.

Origin

The term “generalization principle” is proposed here. Nevertheless the value of generalized
solutions is well known at least since:

David Parnas: Designing Software for Ease of Extension and Contraction [42]

Evidence

• Proposed: GP is assumed to be intuitive to every developer. Despite this fact—or
maybe because of that—neither scientific examinations of its validity nor widely known
publications describing it could be found.

Relations to Other Principles

Generalizations

Specializations

Contrary Principles

• →4.3.2 Keep It Simple Stupid (KISS): A generalized solution is typically not simple
anymore. This is the typical conflict between generality and simplicity.

• →4.6.1 Easy to Use and Hard to Misuse (EUHM): Too general solutions may lead to
complicated usage of the module.

• →4.3.6 Rule of Explicitness (RoE): RoE often results in specific solutions. Generality
often requires stating something implicitly.
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Complementary Principles

• →4.3.4 Don’t Repeat Yourself (DRY): A more general solution avoids duplication.

• →4.4.3 Encapsulate the Concept that Varies (ECV): Encapsulating a varying concept
typically results in a more generally applicable solution. This is especially true when
an abstract concept is encapsulated by introducing an interface or an abstract class.

Examples

4.3.6 Rule of Explicitness (RoE)
Variants and Alternative Names

• Explicit Is Better Than Implicit (EIBTI) [44]

Principle Statement

“Explicit is better than implicit.” [44]

Description

Solutions often differ in the level of explicitness. A feature can be implemented explicitly or it
can be a side-effect of the implementation of another feature or a more general functionality.
The same applies to module communication. A module can invoke another module directly
or there can be various forms of indirections like events or observers.
RoE states that explicit solutions are better than implicit ones. Indirection, side-effects,

configuration files, implicit conversions, etc. should be avoided.

Rationale

If something is realized explicitly, it is easier to understand. Implicit solutions require the
developer to have a deeper understanding of the module as it is necessary to “read between
the lines”. Implicit solutions also tend to be more complex. So explicit solutions are assumed
to be less error-prone and easier to maintain.

Strategies

• Avoid indirection (but keep →4.5.2 Low Coupling (LC) in mind)
– Avoid indirection though events/listeners/observers, etc. and use direct references

instead.
– Avoid indirecting middleware like messaging middleware in favor of direct com-

munication. Explicit communication paths are easier to grasp and debug.

• Avoid configurability (but keep →4.3.5 Generalization Principle (GP) in mind)
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– Avoid using configuration files for specifying behavior. Instead implement varying
behavior explicitly.

– Avoid highly configurable modules. Instead implement varying behavior explicitly.

• Explicitly state which module to use
– Avoid importing all classes of a given package/namespace and import the needed

classes explicitly. In Java this means not to specify wildcard imports like import
package.* and to avoid static imports. Similarly in Python this means not to use
wildcard imports.

– Avoid with statements in Delphi and other languages having constructs that let
you invoke methods without explicitly stating the associated object.

• Explicitly name parameters
– In Python and other languages that allow this, use named parameters.
– Avoid long parameter lists and use objects with explicit attribute assignments

instead.
– Use parameter types that explicitly state what the input is. Rather use specific

types for parameters like customers, articles, URLs, colors, money, etc. instead of
using strings or integers for these values.

• Avoid implicit type conversions.
– In C# do not to specify implicit cast operations
– In C++ use the explicit keyword on single-parameter constructors
– In PHP use the === operator instead of == where the type matters

Caveats

See section contrary principles.

Origin

• First without being explicitly stated RoE has been a central design principle of the
programming language Python[45]. Python dates back to 1991.

• Later this philosophy was stated as part of the “Zen of Python”[44].

• The rule—although often not stated as such—is also known outside the python
community[46].

• Extend and origin beyond that remains unclear.

• The name “rule of explicitness” is newly introduced here.
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Evidence

• Accepted: Explained by Martin Fowler in [46] and in virtually every Python book.

Relations to Other Principles

Generalizations

Specializations

Contrary Principles

• →4.3.3 More Is More Complex (MIMC): Stating something explicitly requires more
code.

• →4.3.5 Generalization Principle (GP): RoE often results in specific solutions. General-
ity often requires stating something implicitly.

• →4.5.2 Low Coupling (LC): Direct communication typically has the disadvantage of a
higher coupling. Indirection reduces coupling but creates implicit/indirect communica-
tion paths.

Complementary Principles

• →4.3.2 Keep It Simple Stupid (KISS): Explicit solutions are often also simpler.

• →4.3.1 Murphy’s Law (ML):The typical reason for RoE is to avoid unnecessarily
complicated solutions and possibilities for defects. Don’t loose that goal out of sight.

• →4.4.1 Model Principle (MP): RoE states that “primitive obsession“ shall be avoided.
This means that primitive types should not be used as parameters if there is the
possibility to specify a more specific object type. MP makes this even clearer: In
object-orientation objects instead of plain integers or strings are used.

Examples

4.4 Modularization Principles
4.4.1 Model Principle (MP)
Variants and Alternative Names

• Direct Mapping [14]

• Low Representational Gap (LRG) [12, p. 281]
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Principle Statement

The object structure of the software should model and mirror those concepts and actions of
the real world, that the software supports.

Description

The software should model and mirror the “real world”. This first of all means, that the
structure of the software—to some extend—models the structure of the problem. When
the “real world action” that the software should support comprises certain entities like
e. g. customers, products, and orders, then there should be one object for each customer,
product and order. Furthermore there should be one class for each concept. And if there
is a certain relationship between customers, orders, and products, there should also be an
association between the corresponding classes and references between the objects. So the
object structure models the structure of the real world concepts.

Real world actions are then mirrored in the software system. This means that each action
in the real world triggers a corresponding action in the model world which ensures that the
model stays consistent with the real world. So the software is a kind of a simulation of what
actually happens. If customer orders some product, the software reacts by creating an order
object, which is connected to the customer and the product objects corresponding to the
customer and the product involved in the real world action. This may be done by a method
called Customer.orderProducts().

Rationale

When the structures in the software roughly correspond to the structures of the problem
domain, a developer doesn’t have to learn both of them. Knowing the problem domain is
inevitably necessary. Any further structure of the software has to be learned and understood
in addition. So creating a direct mapping between them, makes understanding the software
easier, which improves maintainability. In such a system for most functionality there is a
“natural”, i. e. an intuitively clear place to implement it. This makes structuring the software
easier and helps finding the implementation for a given functionality.

Strategies

• Create a class for each relevant real-world concept (“natural classes”)

• Create methods corresponding to real-world actions

• Map additionally necessary behavior to natural classes instead of creating artificial
classes

• For artificial behavior that cannot be mapped to a natural class at least create a
metaphor or an artificial model (like for example a state machine)
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Caveats

This principle may lead to the problem of modeling the real world in too great detail. This
complicates the design without giving any further benefits. Especially a wrong understanding
of inheritance may lead to “taxomania”, where an inheritance relation and the respective
classes are only introduced because there seems to be such a taxonomy in the “real world”[14].
But inheritance should only be used on purpose, not just because it is possible. A special
form of this problem is called “vapor classes”, which are useless abstractions which are never
used[10].

See also section contrary principles.

Origin

The root of this principle is the very beginning of object-orientation itself. The idea behind
Simula, the first object-oriented programming language, was to view program executions
as simulations. Kristen Nygaard, one of the creators of Simula defines object orientation
as follows: “Object-oriented programming. A program execution is regarded as a physical
model, simulating the behavior of either a real or imaginary part of the world.”—see for
example [47].

Although this view is disputed as a definition for object-oriented programming, it became
the key idea of object-oriented analysis. In [48, p. 191] Grady Booch clearly states that
objects “directly reflect our model of reality”.

Evidence

• Accepted: Virtually every introduction to object-oriented analysis roughly explains this
but mostly without stating it as a principle. Bertrand Meyer explains this principle in
his book Object-Oriented Software Construction [14]

• Questioned: The value of this principle is disputed. It is questioned whether objects
in the OOP sense nicely map to real-world objects[49][50]. Furthermore there is the
typical object-relational impedance mismatch and the observation that business rules
are sometimes cross-cutting [51]. There also is not one single obvious model for the
“real world”. A model is subjective to the one creating the model. So it is not enough to
model the “real world” but it is important to think about how to model it [14, p. 694].

Relations to Other Principles

Generalizations

Specializations

Contrary Principles
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• →4.4.3 Encapsulate the Concept that Varies (ECV): Sometimes there are “concepts
that vary” which are not directly related to a real-world concept. So ECV demands
having an artificial class.

• →4.3.2 Keep It Simple Stupid (KISS): There are often simpler ways to build a software
system than to model and mirror the real world behavior, which frequently means
having more objects and more complicated structures.

• →4.4.2 High Cohesion (HC): MP sometimes creates classes with suboptimal cohesion.

Complementary Principles

• →4.5.1 Tell, don’t Ask/Information Expert (TdA/IE): TdA/IE tells how to distribute
functionality among the natural classes which are created according to the Model
Principle.

• →4.5.2 Low Coupling (LC): When designing a model for a software, it has to be borne
in mind that structures with low coupling are desirable.

Examples

Example 1: Object Structure (Library) In a software system for a library, there will be a
classes like Book, Reader, and Lending. A reader has a name, a book has a title and the
reader must return the book after some date of expiry. So the corresponding classes will
have attributes describing these properties. The reader may borrow and return a book, so
the Reader class will have methods borrow() and return(). Classes, attributes, and methods
are directly inferred from the problem domain.

Example 2: Swing GUI frameworks like Java Swing typically have classes corresponding
to the types of controls that can be used to build graphical user interfaces. So Swing for
example has classes like JButton, JCheckBox, and JTextField.

Furthermore buttons, check boxes, text fields, and the like are also models of concepts in
the real world. Buttons are typical controls of machines and check boxes and text fields are
parts of a typical (paper-based) form. So the class JCheckBox is a model for a check box on
the screen which itself is a model for a check box on a paper-based form.
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Example 3: Dependencies MP also tells which modules may depend on which others. Suppose
there is a software comprising a parser for mathematical functions. Obviously there will
be classes Parser and Function. MP tells that dependencies between these classes shall be
according to the model. Logically a parser parses a string and creates Function objects. It
is impossible to think about the Parser without Functions. So Parser may naturally depend
on Function.
On the other hand our intuitive model of parsers and functions tells us that a Function

does not need a Parser to be a meaningful entity. One can easily think of Functions created
by using builder methods instead of a parser. And even if that wasn’t true and there would
only be the possibility to create functions by using parsers, a Function object logically can
work without knowing that there are parsers which have created it. In an imaginary hierarchy
of modules Parser would be a module on a higher scale than Function. So MP forbids that
Function depends on Parser.

4.4.2 High Cohesion (HC)
Variants and Alternative Names

Principle Statement

Cohesion in a module should be high.

Description

The cohesion of a module is a measure for how well the internal parts of a module (e. g. the
methods and attributes of a class) belong together. Having a high cohesion means, that a
module should only comprise responsibilities which belong together.

Rationale

Not adhering to this principle, i. e. having a low cohesion, means that one module has several
unrelated or only loosely related responsibilities. A change in the requirements for one
of these may thus also affect the others which would not be the case in a highly cohesive
module.

Strategies

• Divide one large module into several smaller but more cohesive ones

Caveats

See section contrary principles.

Origin

W. P. Stevens, G J. Myers, L. L. Constantine: Structured design [52]
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Evidence

• Examined There are metrics that try to measure cohesion. There are studies relating
these cohesion measures to the number of errors found during testing [17]. This
correlation is evident. The limitation of these studies is that these cohesion metrics
cannot represent the cohesion notion completely.

• Accepted The concept of high cohesion is widely known and described in several
well-known books for example in Craig Larman’s Applying UML and Patterns [12].

Relations to Other Principles

Generalizations

Specializations

Contrary Principles

• →4.3.3 More Is More Complex (MIMC): Making a module highly cohesive often
results in additional modules. Sometimes it is simpler to assign a minor unrelated
responsibility to a module, which lowers the cohesion.

• →4.4.1 Model Principle (MP): Adhering to HC sometimes means to split up a class
into several smaller ones which might correspond to the model less well.

• →4.5.2 Low Coupling (LC): A system consisting of one single module has a very low
coupling as there are no dependencies on other modules. But such a system also has
low cohesion. The other extreme, very many highly cohesive modules, naturally has a
higher coupling between the modules. So here a compromise has to be found.

Complementary Principles

• →4.5.1 Tell don’t Ask/Information Expert (TdA/IE): IE may help finding solutions
with high cohesion. On the other hand it may also be disadvantageous in some cases
(see →4.5.1 Tell don’t Ask/Information Expert (TdA/IE), caveats section).

• →4.4.3 Encapsulate the Concept that Varies (ECV): Adhering to HC often results in
modules to be split up into several more cohesive ones. ECV gives further advice on
how to do that.
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Examples

4.4.3 Encapsulate the Concept that Varies (ECV)
Variants and Alternative Names

Principle Statement

Encapsulate the Concept that Varies means a design is better when those parts that vary
are encapsulated in a separate module.

Description

This principle has two aspects. The first one is about making changes local. Everything
which is supposed to change in the future should be encapsulated in a single module. This
means cross-cutting concerns are avoided as much as possible. This is not completely possible
but in many cases it is.
The second aspect is about introducing abstractions. Sometime the varying concept is

one which varies at runtime rather than by maintenance. So at runtime it is decided upon a
certain variation or there can be even several variations at the same time. In this case there
has to be an abstract base class or an interface which encapsulates the varying concept.
Several concrete descendant classes then specify the concrete variation.

The difference between the two aspects is whether the varying concept is one that changes
over time during maintenance or one that may change at runtime. Nevertheless the advice
is the same: encapsulate the concept that varies.

Rationale

There are two reasons for this principle. The first reason is locality. When a varying concept
is properly encapsulated in a single module, only this module is affected in case of a change.
This reduces maintenance effort and ripple effects.

The second reason comes to play when the varying concept is implemented as an abstract
class or interface. In this case a variation can be introduced without changing existing and
tested code. This reduces testing effort (as already tested code does not need to be retested
as it is not changed) as well as ripple effects (as the enhancement is done simply by adding
a class. Note that for this rationale to work, the →4.7.3 Liskov Substitution Principle (LSP)
also has to be adhered to.

Strategies

• Introduce a separate module for the concept that may change in the future. In that
way the future change will only affect that particular module. If the varying concept is
properly encapsulated, only this module will have to change.

• Introduce an interface encapsulating the varying concept. The interface may be
implemented differently by several classes and code that only relies on the interface
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can handle any class implementing the interface. In case of another variation, just
another class has to be introduced and this class has to implement the interface. If
the abstraction is done properly, no module has to change.

• Introduce an abstract base class encapsulating the varying concept. This is basically the
same as introducing an interface. But here, implementation can also be inherited. So
common parts can remain in the abstract base class whereas only the actual variations
are defined in the subclasses. By means of method overriding, the implementation of
the base class methods can be changed without touching the base class directly.

• Use design patterns. Several design patterns use the above techniques to encapsulate
varying concepts. For example:

– Abstract Factory: A family of objects changes.
– Factory Method: The exact type of an object to create changes.
– Adapter: The interface of a module changes.
– Bridge: A concept varies in more than one aspect.
– Decorator: The behavior of certain methods may need to be enhanced.
– Iterator: The traversal algorithm of a structure changes. Or the structure itself

changes resulting in the need for a different traversal algorithm.
– Observer: The objects interested in a certain event may change.
– State: The behavior in a certain state or the state machine (states and transitions)

of a certain module changes.
– Strategy: An algorithm changes.
– Template Method: The concrete steps in an algorithms change.
– Visitor: New operations have to be added to a given more or less static inheritance

structure of classes.
– ...

Caveats

See section contrary principles.

Origin

The principle is stated, explained and used in the “GoF book”: Erich Gamma, Richard Helm,
Ralph Johnson, John Vlissides: Design Patterns: Elements of Reusable Object-Oriented
Software [3, p. 29] But the idea of ECV is actually much older. It was first presented in
David Parnas: On the Criteria To Be Used in Decomposing Systems into Modules [53]
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Evidence

• Accepted: This principle was popularly described in the GoF book and can thus be
regarded accepted.

• Examined: Many of the patterns in the GoF book are precisely about encapsulating
varying concepts. See strategies section.

Relations to Other Principles

Generalizations

Specializations

Contrary Principles

• →4.3.3 More Is More Complex (MIMC): ECV demands adding a new class for a new
varying concept.

• →4.4.1 Model Principle (MP): ECV sometimes results in classes which do not corre-
spond top a real-world concept in the sense of MP. A “concept that varies” can also
be a technical concept.

Complementary Principles

• →4.5.2 Low Coupling (LC): ECV results in the creation of a new module. When
introducing such a new module, LC has to be adhered to.

• →4.7.3 Liskov Substitution Principle (LSP): ECV may result in the introduction of an
abstract base class. Here it is important to get the abstraction right. Otherwise LSP
may be violated.

• →4.3.5 Generalization Principle (GP): Encapsulating a varying concept typically
results in a more generally applicable solution. This is especially true when an abstract
concept is encapsulated by introducing an interface or an abstract class.

• →4.5.3 Dependency Inversion Principle (DIP): ECV may result in the introduction of
an abstract base class. Here DIP demands that other classes should only depend on
this new abstract base class and not on the concrete subclasses.

• →4.7.1 Information Hiding/Encapsulation (IH/E): ECV tells that varying concepts
should be encapsulated. IH/E then tells how encapsulation is done.
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Examples

4.5 Module Communication Principles
4.5.1 Tell Don’t Ask/Information Expert (TdA/IE)
Variants and Alternative Names

• Information Expert or Expert in [12]

• Do It Myself in [54]

• Tell, don’t Ask in [55]

Principle Statement

• Assign a responsibility to that module which has the largest subset of the required
information.

• Don’t ask an object for information, make computations, and set values on the object
later. Tell the object what it should do.

Description

Each module has a set of responsibilities. Subsystems have specific tasks, packages group
several related classes, classes have methods and attributes, and so on. So there is a kind of
mapping between modules and responsibilities. This mapping is good when the information
which is necessary to fulfill the given task is present in the given module so there is no need
to acquire all this information.

Rationale

When this principle is not adhered to, then a module has a responsibility for which it is
lacking some information. So in order to fulfill the task the module has to first acquire the
needed information by invoking other modules. This increases the dependencies between the
modules (which may lead to ripple effects).
Furthermore not adhering to TdA is a sign of not thinking in an object-oriented way. In

procedural programming there is a clear separation between data structures and procedures.
Applying this thinking to object-oriented languages leads to objects which have no func-
tionality besides having trivial getter and setter methods making it a dump data structure
instead of an object carrying real behavior.

Strategies

• Assign a responsibility to the class that has the largest subset of the needed information.



4.5 Module Communication Principles 54

• Mirror functionality of composed objects to the interface of the class instead of having
a getter-method returning the composed object

• Have the objects operate on their own data using appropriate methods. Avoid getters
and setters.

Caveats

Sometimes assigning responsibilities using IE results in bad solutions (high coupling, low
cohesion). This is because IE just focuses on the availability of data. So for example IE
would demand domain objects saving themselves to the database. This is bad since it couples
the domain objects to the database interface (JDBC, SQL, etc.) and lowers cohesion by
adding unrelated responsibilities to the classes. Here it is better to give the task of persisting
the domain objects to a separate class [12, p. 298].

See also section contrary principles.

Origin

Craig Larman: Applying UML and Patterns – An Introduction to Object-Oriented Analysis
and Design and Iterative Development [12]

Evidence

Accepted: This principle is prominently described in Craig Larman’s book Applying UML
and Patterns[12].

Relations to Other Principles

Generalizations

Specializations

Contrary Principles

• →4.3.3 More Is More Complex (MIMC): Adhering to TdA/IE sometimes results in
adding further methods.

Complementary Principles

• →4.5.2 Low Coupling (LC) Adhering to IE typically leads to low coupling as there is
less need to communicate with other modules to get the necessary information. But in
some cases IE also increases coupling (see section caveats).

• →4.4.2 High Cohesion (HC) Adhering to IE typically leads to high cohesion as respon-
sibilities which belong together typically operate on the same data. But in some cases
IE also lowers cohesion (see section caveats).
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• →4.4.1 Model Principle (MP): TdA/IE tells how to distribute functionality among the
natural classes which are created according to the Model Principle.

• →4.7.1 Information Hiding/Encapsulation (IH/E): Assigning responsibilities to objects
using Information Expert may accidentally break encapsulation. It typically does not
but it has to be considered. Furthermore TdA is about not having getter methods
returning constituent parts of a module. Encapsulation can be another reason for that.

• →4.7.4 Principle of Separate Understandability (PSU): TdA/IE is about responsibility
assignment. Another aspect of this task is treated by PSU.

Examples

4.5.2 Low Coupling (LC)
Variants and Alternative Names

• Loose Coupling

Principle Statement

Coupling between modules should be low.

Description

A module should not interact with too many other modules. Furthermore if a module A
interacts with another module B, this interaction should be loose, which means that A should
not make too many assumptions about B.

Coupling is a measure of dependency between modules. The more dependencies there are,
the stronger the dependencies are, and the more assumptions are made upon other modules,
the higher is the coupling.

There are different forms of couplings which can be rated according to their strength [56]:

No coupling The modules do not know each other.

Call coupling A module calls another one.

Data coupling A module calls another one passing parameters to it.

Stamp coupling A module calls another one passing complex parameters to it.

Control coupling A module influences the control flow of another module.

External coupling The modules communicate using a simple global variable.

Common coupling The modules communicate using a common global data structure.
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Content coupling A modules depends on the inner working of another module. This is the
strongest form of coupling.

The forms ranging from no coupling to stanp coupling can be considered “good” couplings.
The others are rather strong.

There are also some additional forms of undesirable couplings:

Tramp coupling A module is only coupled to a data structure because some other module
needs the data. The module gets the data and passes it to the other module without
touching the “tramp data” [57].

Logical coupling A module makes some assumptions about another module without referenc-
ing it. For example a module A only sorts a list because some other module B which
A technically does not know about needs it sorted.

Rationale

If a module A interacts with a module B, there is a certain dependency between these
modules. When for example A uses a certain functionality of B, then A depends on B. A
makes the assumption that B provides a certain service, and moreover it makes assumptions
on how this service can be used (by which mechanism, which parameters, etc.). If one of
these assumptions is not true anymore because B has changed for some reason, A also has
to change. So the fewer dependencies there are, the less likely it is that A stops working and
has to be changed.
Furthermore A makes many and detailed assumptions about B, there is also a high

probability that A has to change despite only relying one one other module. This is because
in such a case A also needs to change when only a certain detail of B changes.

But if coupling is low, there are only few assumptions between the modules which can be
violated. This reduces the chance of ripple effects.

Strategies

• Indirection: Don’t access the other module directly but have another module do that.

• Use the observer pattern [3]

• Use lower forms of coupling

• Merge modules: when there is only one module, then there is no communication and
thus no coupling

• Hide information: Information which is hidden cannot be depended upon.
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Caveats

Coupling can be reduced by several technical measures (see section strategies). But while
these measures reduce the coupling technically, they do not necessarily reduce the logical
coupling. In such a case two modules A and B may seem decoupled, but ripple effects may
occur anyway because they make assumptions about each other. In such a case it is better
to make the coupling explicit by not applying a decoupling strategy. It may also be possible
to find a better suitable strategy or a better way of applying the strategy to also get rid of
the logical coupling.

Furthermore note that coupling to a stable module is often no problem. The problematic
cases are couplings to unstable modules. This means that applying decoupling strategies is
beneficial when a coupling to an unstable module is reduced. But it may not be beneficial in
the other cases.

See also section contrary principles.

Origin

W. P. Stevens, G J. Myers, L. L. Constantine: Structured design [52]

Evidence

• Examined: There are metrics that try to measure coupling. There are studies relating
these coupling measures to the number of errors found during testing [17]. This
correlation is evident. The limitation of these studies is that these coupling metrics
cannot represent the coupling notion completely.

• Accepted: The concept of low coupling is widely known and described in several
well-known books for example in Craig Larman’s Applying UML and Patterns

Relations to Other Principles

Generalizations

Specializations

• →4.5.3 Dependency Inversion Principle (DIP): LC aims at reducing the dependencies
to other modules. One way to do so is to only depend on abstractions. DIP is about
this aspect.

Contrary Principles

• →4.3.2 Keep It Simple Stupid (KISS): Reducing the coupling often involves the use of
complicated interaction patterns, indirections, etc.
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• →4.4.2 High Cohesion (HC): A system consisting of one single module has a very low
coupling as there are no dependencies on other modules. But such a system also has
low cohesion. The other extreme, very many highly cohesive modules, naturally has a
higher coupling between the modules. So here a compromise has to be found.

• →4.3.6 Rule of Explicitness (RoE): Direct communication typically has the disadvan-
tage of a higher coupling. Indirection reduces coupling but creates implicit/indirect
communication paths.

Complementary Principles

• →4.5.1 Tell, don’t Ask/Information Expert (TdA/IE): IE may help to reduce coupling.
Although there are also contrary cases (see →4.5.1 Tell, don’t Ask/Information Expert
(TdA/IE), section caveats).

• →4.4.1 Model Principle (MP): LC aims at reducing the dependencies to other modules.
So a module shall depend on only a few others. MP now tells which dependencies are
allowed and which aren’t.

• →4.7.1 Information Hiding/Encapsulation (IH/E): Higher forms of couplings (especially
content couplings) break encapsulation.

Examples

4.5.3 Dependency Inversion Principle (DIP)
Variants and Alternative Names

Principle Statement

“Depend on abstractions” [9, p. 129].

Description

A simplified description of DIP is that a variable declaration should always have the
(static) type of an abstract class or interface. By doing so a module depends only on this
abstraction. The concrete subclass realizing the details is referenced only once, namely when
it is instantiated.

The more elaborate definition by Robert C. Martin reads as follows:
“a. High-level modules should not depend on low-level modules. Both should depend on

abstractions.
b. Abstractions should not depend on details. Details should depend on abstractions.”[9]
Following this rule leads to “inverted” dependencies compared to classical procedural

approaches. The following diagram shows the classical approach. A high-level module A
uses a low-level module B.
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When applying DIP, both modules depend on the abstraction (note that in UML diagrams
all arrows point into the direction of the dependency):

B is not depended upon anymore but it depends on another module. This is the inverted
dependency.

Rationale

When DIP is not applied, only the low-level modules can be reused independently. The
higher-level modules depend on the others, so trying to reuse them makes it necessary to
either also reuse the lower-level modules or to change the higher-level module. The former
is often not wanted because reuse is often done in another context where the lower-level
modules do not fit. And the latter is error-prone and requires additional work as it requires
changes to already working modules.

Strategies

• Use events, the observer pattern, etc. to remove dependencies

• Have an interface type for every class

• Declare only interface types so that an object variable generally has an interface as
static type and a concrete class as dynamic type

• Do not derive classes from concrete ones (i. e. non-abstract classes)

• Do not override already implemented methods in subclasses
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Caveats

It is normally not helpful to apply DIP to value objects like classes for amounts of money,
date and time, or air pressure.

See also section contrary principles.

Origin

Robert C. Martin: Object Oriented Design Quality Metrics: An Analysis of Dependencies
[58]

Evidence

Accepted: DIP is part of the well-known SOLID principle collection [9].

Relations to Other Principles

Generalizations

• →4.5.2 Low Coupling (LC): LC aims at reducing the dependencies to other modules.
One way to do so is to only depend on abstractions. DIP is about this aspect.

Specializations

Contrary Principles

• →4.3.3 More Is More Complex (MIMC): DIP demands introducing abstractions,
especially abstract classes or interfaces.

Complementary Principles

• →4.4.1 Model Principle (MP): DIP demands having abstractions. MP tells how these
abstractions can look like.

Examples

Example 1: Furnace An example for a high-level module is a regulator module of a furnace.
The classical approach would result in the regulator depending on a thermometer and a
heater. in such a case it would not be possible to reuse the regulator module for regulating
the fluid level of a reservoir or the speed of a car. A DIP-compliant solution would result in
the regulator just depending on a sensor module and a actuator module and thermometer
and header implementing these interfaces. By doing so thermometer, heater, and regulator
can be reused independently.

This example is taken from [9] and slightly modified.



4.6 Interface Design Principles 61

4.6 Interface Design Principles
4.6.1 Easy To Use And Hard To Misuse (EUHM)
Variants and Alternative Names

Principle Statement

A module shall be easy to use and hard to misuse.

Description

A module is easy to use when the obvious way of using it is correct, when following established
conventions means to use it correctly and the identifier of the module hints the correct usage.
A module is hard to misuse, if misusing it requires more work than correct usage and when
the compiler signals wrong usages.

Rationale

This principle is common wisdom among API designers. APIs are used by many people and
mainly by those who have not implemented the API. Few people read the documentation
and will just try to use an API the obvious way. If the obvious way of using it is correct, if
the API is easy to use, development will be more efficient. Furthermore if an API is hard
to misuse, fewer mistakes will be made and which decreases the need for debugging and
improves code quality.
The same reasoning holds for every module, not just APIs. There are always other

developers who will use a module. Either team members or successors. Moreover after a
while one will not remember the details of a module anymore, the difference between other
people and oneself will vanish. This means EUHM not only holds for APIs and not only for
interfaces provided to the other team members but it holds for every single module.

Strategies

This is a very general principle so there is a large variety of possible strategies to adhere
more to this principle largely depending on the given design problem:

• Make use of static typing, so the compiler will report faults

• Make the interface simple, so there will be fewer usage defects (see →4.3.2 Keep It
Simple Stupid (KISS))

• Use the same mechanisms wherever reasonably possible (see →4.6.3 Uniformity Prin-
ciple (UP))

• Use consistent naming and models throughout the design (see →4.6.3 Uniformity
Principle (UP) and →4.4.1 Model Principle (MP))
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• Avoid Preconditions (see →4.7.2 Invariant Avoidance Principle (IAP))

• ...

Caveats

See section contrary principles.

Origin

The precise origin of the principle is unknown.

Evidence

Proposed

Relations to Other Principles

Generalizations
• →4.3.1 Murphy’s Law (ML): Because of ML an interface should be crafted so it is easy

to use and hard to misuse. EUHM is the application of ML to interfaces.

Specializations
• →4.6.2 Principle of Least Surprise (PLS): A module is easy to use if there is no surprise

in how it works.

Contrary Principles
• →4.3.2 Keep It Simple Stupid (KISS): Both principles, KISS and EUHM, are about

simplicity. But while EUHM is about the simplicity of an interface, KISS is rather
concerned with simplicity of the implementation. KISS is contrary in those cases where
the solution which is easier to implement is not so easy to use or imposes further
possibilities for misuse.

Complementary Principles
• →4.4.1 Model Principle (MP): An interface that is crafted according to the model is

easier to use than one that is not.

• →4.7.2 Invariant Avoidance Principle (IAP): One reason for a possible misuse of a
module is an invariant. For example there might be a method which takes a list and an
index where the index has to be within the bounds of the list. Each of these invariants
imposes further possibilities for misuse of the module. So it is better to avoid them.

• →4.7.1 Information Hiding/Encapsulation (IH/E): A module should be properly
encapsulated in order to make it easy to use and hard to misuse.
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Examples

4.6.2 Principle Of Least Surprise (PLS)
Variants and Alternative Names

• Principle of Least Astonishment (PLA)

• May also be referred to as “rule” or “law” instead of “principle”

• Acronyms sometimes include the “o” for “of”: PoLA, PoLS

Principle Statement

“In interface design, always do the least surprising thing.”[15]

Description

Never surprise the user. An interface should behave exactly as the user thinks it behaves.
What surprises the user depends on the kind of interface (user interface, module interface)
and the type of user (end user, fellow programmer, maintainer). The central idea of PLS is
to think about how the user would want to use the interface.

Rationale

Surprises are always a potential source for frustration. A user wants to be in control of the
system. If the system does not behave as intended, the user gets disappointed and has to
determine how to get the system do what it should do. On the other hand a system that
behaves according to the users wishes is pleasant to use.

Secondly when everything works as expected, the user will make fewer mistakes. In case of
a user interface this means that the user is more effective and in case of a module interface
the software will have fewer defects.

Strategies

• Separate methods that change an object (commands) from methods asking the object
a question (queries)
– This especially means that a query method should not alter the observable object

state

• Name all modules in a way that clearly communicates what the module is and does
– Names of classes shall be nouns representing a specific (real-world) concept (see

→4.4.1 Model Principle (MP))
– Names of interfaces shall be adjectives describing a specific property. This

typically results in names ending with -able
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– Names of command methods shall be verbs (in imperative form)
– Names of query methods shall start with get- or is-
– Names of mathematical functions or the like shall be named by the respective

concept (like sqrt)
– ...

• Avoid “clever” solutions which are hard to grasp in favor of simple, dumb ones (see
→4.3.2 Keep It Simple Stupid (KISS))
– When in doubt, use brute force [15]
– Tend to use the first solution that comes in mind

Caveats

See section contrary principles.

Origin

The precise origin is unknown. Probably it’s The Tao Of Programming by Geoffrey James
[59].

Evidence

Accepted: PLA is widely known and also treated in Eric S. Raymond’s The Art of Unix
Programming

Relations to Other Principles

Generalizations

• →4.6.1 Easy to Use and Hard to Misuse (EUHM): A module is easy to use if there is
no surprise in how it works.

Specializations

Contrary Principles

Complementary Principles

• →4.4.1 Model Principle (MP): PLS is mainly about how module identifier and module
behavior relate to each other. MP tells that modules named according to the model
are least surprising.

• →4.6.3 Uniformity Principle (UP): When applying PLS, UP should also be considered
for naming modules.
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Examples

4.6.3 Uniformity Principle (UP)
Variants and Alternative Names

Principle Statement

Solve similar problems in the same way.

Description

Software design comprises many similar tasks. There are plenty of design decisions that are
similar to ones taken before. UP tells that a design is good when similar design problems are
solved the same way. UP can be applied to a large variety of problems: naming identifiers,
ordering parameters, deciding upon framework or library usage, etc.
Striving for consistency and always using the same solutions also means that it can be

a good idea to apply a “bad” or less-well suited solution for the sake of consistency. If for
example a bad naming scheme is used throughout the whole project, it is advisable not to
break it as an inconsistency in the naming scheme would be worse than applying the bad
naming scheme everywhere.

Rationale

Following UP reduces the number of different solutions. There are fewer concepts to learn,
fewer problems to solve and fewer kinds of defects that can occur. So the developers, whether
the original ones or the maintainers, have an easier task in creating, understanding, and
maintaining the software. By reducing variety in the design, the software becomes easier
(see →4.3.2 Keep It Simple Stupid (KISS)).

Strategies

• Use the same naming scheme everywhere

• Use the same techniques, mechanisms, libraries, and frameworks everywhere

• In similar methods use the same order of parameters

Caveats

UP demands solving similar problems in the same way and not just in a similar way. This
is crucial as subtle differences can be dangerous. These small differences are created easily.
Sometimes it is impossible to do two things exactly the same way. And also over time two
modules may slowly diverge. So it is sometimes better to have two modules work completely
differently than to allow for these subtle differences as they easily lead to misconceptions
and mistakes (see →4.3.1 Murphy’s Law (ML)).
See also section contrary principles.
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Origin

This principle is newly proposes here. Nevertheless the idea is not new and should be pretty
intuitive to every developer.

Evidence

• Proposed

Relations to Other Principles

Generalizations

• →4.3.1 Murphy’s Law (ML): A typical source of mistakes are differences. If similar
things work similarly, they are more understandable. But if there are subtle differences
in how things work, it is likely that someone will make the mistake to mix this up.

Specializations

Contrary Principles Note that UP can be contrary to virtually every other principle as it
demands neglecting other principles in favor of uniformity.

• →4.3.2 Keep It Simple Stupid (KISS): Although UP normally reduces complexity,
sometimes UP demands more complex solutions because they are already applied
elsewhere and for the sake of uniformity shall also be applied in simpler contexts where
they would not be necessary.

• →4.4.1 Model Principle (MP): UP may demand adhering to a certain naming scheme,
which may not be best with respect to MP. See example 1: naming schemes.

Complementary Principles

• →4.6.2 Principle of Least Surprise (PLS): When applying UP, PLS should also be
considered for naming modules. See example 1: naming schemes.

Examples

Example 1: Naming Schemes A typical example of the application of UP is the naming of
method identifiers for common container classes like stacks or queues. This also shows that
there are several ways to apply this principle.
Stacks typically have the methods push, pop and peek (sometimes also called top). push

puts an item onto the stack, pop removes the top most item and peek retrieves the value
of the top most item without removing it from the stack. This is how the common stack
model describes this data structure (see →4.4.1 Model Principle (MP)). Applying UP to
this naming decision means that the methods should be named precisely as they are named
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everywhere else also. So a developer knowing the model or other implementations of the
model will immediately know how to use this module as well. In this case MP and UP
demand the same thing. →4.6.2 Principle of Least Surprise (PLS) is satisfied here as well as
a developer knowing stacks will expect exactly that.
Queues on the other hand typically have the methods enqueue, dequeue, and peek (or

front/first or the like). MP would demand naming the operations of a Queue module
exactly that way. But there are several ways Up can be applied here. The one way is to
apply the principle just like above. Resulting in methods enqueue and dequeue. This is how
it is done in .NET[60]. The other way is to consider the method identifiers of the Stack
module. A possible application of UP could be to demand naming the queue methods just
like the stack methods, meaning also push, pop and peek. This is the naming scheme which
was chosen in the Delphi RTL [61]. Here MP and UP are contrary. A further downside of
this approach is that pop and push methods might be surprising for a queue class. So PLS
would oppose this solution.

A third possibility is to find a common abstraction and to apply a very general naming
scheme to all descendant classes (stack classes, queue classes and others). This is the way it is
done in Eiffel[14, p. 127]. Here there the method names are put, remove and item regardless
of the concrete data structure. This is contrary to MP but creates a uniform naming scheme
throughout the API. So there is less uniformity across APIs but stronger uniformity within
the API. MP and UP are here contrary too. For PLS this means that a developer who is
used to this philosophy is never surprised by having these methods. But developers new to
it might be nevertheless.

4.7 Internal Module Design Principles
4.7.1 Information Hiding/Encapsulation (IH/E)
Variants and Alternative Names

• Parnas’ Law[17]

Principle Statement

Modules should be encapsulated.

Description

Information hiding and encapsulation are sometimes seen as one and sometimes as two
separate but related notions [53][62][63]. This varies through literature. There are three
stages of information hiding/encapsulation which can be defined as having a capsule, making
the capsule opaque, and making the capsule impenetrable.

Having a capsule means that an object has methods which enable the client of the module
to use it without accessing its internal data structures. Making the capsule opaque means
that the inner workings are hidden from the clients. This is typically done by using access
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modifiers (private, protected). Lastly making the capsule impenetrable means that no client
should be able to get a direct reference to an internal data structure.
A properly encapsulated module with an impenetrable capsule is better than an module

with just an opaque capsule. And this is better than a module with a non-opaque capsule.
But at least having a capsule is better than not having one at all.

Rationale

When the inner workings of a module are hidden from the outside, then they can be changed
without any other module noticing it. If the interface of the module stays the same, the rest
of the system is not affected by the change. So adhering to IH/E prevents ripple effects.

Strategies

• Use the lowest possible visibility for a variable or method
– Make all attributes private and use getter and setter methods to access them
– Better also avoid getters and setters
– Find suitable abstractions for data types and use appropriate methods instead of

just getters and setters

• Avoid aliasing problems with value objects
– If the programming language supports that use call-by-value objects (like stack

objects in C++, structs in C#, records in Delphi, etc.) for value objects like Date,
Money, EMailAddress, TelephoneNumber, etc.

– Otherwise use immutable objects which are handled call-by-reference but needn’t
be copied

• Avoid aliasing problems with lists and similar data structures
– Copy internal list objects before returning them or only return a read-only

interface to them

Caveats

See section contrary principles.

Origin

David Parnas: On the Criteria To Be Used in Decomposing Systems into Modules [53]

Evidence

Accepted: Virtually every book on object-orientation (e. g. [12]) explains IH/E to some
extend.
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Relations to Other Principles

Generalizations

Specializations

Contrary Principles

• →4.3.2 Keep It Simple Stupid (KISS): Not adhering to IH/E is often easier.

Complementary Principles

• →4.4.1 Model Principle (MP): IH/E demands having an interface for a module which
hides the inner workings. MP tells how such an interface can look like.

• →4.7.3 Liskov Substitution Principle (LSP): For subclasses you can waken encapsulation
by having a wider protected interface which can be used by subclasses. For these cases
LSP has to be considered, too.

• →4.5.1 Tell, don’t Ask/Information Expert (TdA/IE): Encapsulation is about not
having getter methods returning constituent internal parts of a module. TdA can be
another reason for that.

• →4.5.2 Low Coupling (LC): Higher forms of couplings (especially content couplings)
break encapsulation.

• →4.7.4 Principle of Separate Understandability (PSU): IH/E is about constructing a
module in a way that hides the inner workings so it can be used without knowing them.
PSU on the other hand is about constructing a module such that its inner workings
(and its usage also) can be understood without knowledge about other modules.

• →4.6.1 Easy to Use and Hard to Misuse (EUHM): A module should be properly
encapsulated in order to make it easy to use and hard to misuse.

Examples

Example 1: Date and Tine In Delphi there is the data structure TDateTime which represents
a specific date and time value [64]. This is an alias name for a double value where the
integer part represents the number of days since December 30, 1899. And the fractional part
represents the time of day. This alone is a data structure but it is not encapsulated.
The Delphi runtime library (RTL) now specifies functions which operate on TDateTime

structures. This is “having a capsule”. But since it is still possible to access the internal
representation directly, the inner workings are not hidden.

This is different in Java. Here the inner workings are hidden. It is not possible to access
the private attributes of java.util.Date[24]. Here the capsule is opaque (and impenetrable).
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Example 2: Aliasing A typical example for an opaque but penetrable capsule is the following:
class SomeClass
{

private SomethingDifferent innerObject ;

5 public SomethingDifferent getInnerObject ()
{

return innerObject ;
}

}

In such a case the innerObject is private, which means it is hidden. But it is revealed
by the getter method. In order to establish an impenetrable capsule, the object has to be
copied:
class SomeClass
{

private SomethingDifferent innerObject ;

5 public SomethingDifferent getInnerObject ()
{

return innerObject .clone ();
}

}

4.7.2 Invariant Avoidance Principle (IAP)
Variants and Alternative Names

Principle Statement

Avoid Invariants and Preconditions.

Description

Methods typically have preconditions. Something that has to be true prior to invoking the
method so it can work properly. Typical cases are parameters that may not be null or have
to be in a certain range. A solution is better the fewer preconditions there are.

Furthermore there are (class) invariants, i. e. conditions that have to be true in all observable
states during the whole lifetime of an object. Typical invariants are attributes that may
not be null or have to be in a certain range, lists that have to contain certain objects with
certain properties, etc. A solution s better the fewer invariants there are.
While preconditions and invariants are absolutely necessary, introducing further ones

comes at a certain cost.
Note that this principle does not apply to loop invariants, control-flow invariants, etc. as

there is normally no chance to avoid them. But there can be fewer or more class invariants
depending on the solution.
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Rationale

A typical kind of defect is the violation of an invariant or a precondition. The more
preconditions and invariants there are, the more possibilities there are to introduce defects.
And according to →4.3.1 Murphy’s Law (ML) these possibilities will sooner or later result
in defects. So it is better to avoid preconditions and invariants as this reduces the number
of potential faults in the software.

Strategies

• If the language supports that, use references which cannot be null

– In C++ use references instead of pointers (see example 3: C++ references)
– In Java use primitive types instead of their object wrappers (int instead of Integer

but not int instead of Customer)

• Use value objects instead of primitive types (see example 2: string preconditions)

• Avoid duplication of information. If the same information is stored in different places
(maybe in different formats), the values may get out of sync (see also →4.3.4 Don’t
repeat Yourself (DRY)). This also applies to caching.

Caveats

Keep in mind that preconditions and invariants are absolutely necessary for every software.
So this principle is constantly violated. Introducing preconditions and invariants is often also
done deliberately in order to simplify the code (see →4.3.2 Keep It Simple Stupid (KISS)).
So the purpose of this principle is mainly to point out that there are drawbacks. By no
means invariants are problematic themselves or should be entirely avoided. They just also
have disadvantages.

See also section contrary principles.

Origin

This principle is newly introduced here.

Evidence

• Proposed

Relations to Other Principles

Generalizations

• →4.3.1 Murphy’s Law (ML): ML states that an invariant will eventually be broken.
So IAP is the application of ML to invariants.
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Specializations

Contrary Principles
• →4.3.2 Keep It Simple Stupid (KISS): Adding an invariant typically makes the code

easier, as it can be assumed that the invariant holds. In fact that is often the very
purpose if introducing invariants: Either they make the design easier or they are
inevitable. Otherwise they should be avoided.

Complementary Principles
• →4.7.1 Information Hiding/Encapsulation (IH/E): When an invariant cannot be

avoided, it should at least be encapsulated.

• →4.7.3 Liskov Substitution Principle (LSP): Not only the pure number and strength
of invariants is relevant. The question is also which types in an inheritance hierarchy
should have which invariants. Deriving Square from Rectangle for example adds an
invariant in the subclass. LSP adds another point of view to this problem.

• →4.3.4 Don’t Repeat Yourself (DRY): Duplication of information, like having the
same data in different representations or like caching values, creates invariants. So an
invariant sometimes is a hidden DRY violation.

• →4.5.2 Low Coupling (LC): One type of precondition is that a specific method has to
be called prior to another one. This also results in a temporal coupling.

Examples

Example 1: Index Preconditions The first example is about preconditions of a method getting
an index as a parameter.
public void prettyPrintItem (List <Item > items , int index)
{

...
}

This method has the following preconditions:
• items may not be null

• index must be greater or equal 0

• index must be lesser than items.size()

Compare the following solution:
public void prettyPrintItem (Item item)
{

...
}

This is better as it just has one precondition: item may not be null
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Example 2: String Preconditions Another typical example are string parameters:
public void downloadFile ( String url)
{

...
}

This method has the following preconditions:
• url may not be null

• url must contain a valid URL (which is even a quite complicated precondition)
Compare the following method:

public void downloadFile (URL url)
{

...
}

This is better since there is only one precondition: url may not be null

Example 3: C++ References Compare the following two methods:
void prettyPrint ( SomeClass * obj)
{

...
}

1 void prettyPrint ( SomeClass & obj)
{

...
}

In the second version obj cannot be NULL as it is a reference and not a pointer. So there is
one precondition less.

Example 4: DRY A class for complex numbers should either store the real and the imaginary
part or absolute value and argument but not both. If both are stored, there is the invariant
that both representations result in the same complex number.

So it is better to store just one representation (e. g. the real and imaginary values) and if
the other representation is needed (in this case the polar form), it can be computed. This
can also be done transparently in the getter method.

Example 5: Caching All forms of caching and redundancy are typical violations of IAP. They
are done in order to increase performance. But there is always the disadvantage that all
copies have to be kept in sync as there is the invariant that the data may not be inconsistent
throughout the copies. There are forms of caching where temporary inconsistencies are
tolerated. This is slightly better in terms of IAP but nevertheless there are these consistency
constraints and there is the danger of violating them, so to some degree the disadvantage is
always there.
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4.7.3 Liskov Substitution Principle (LSP)
Variants and Alternative Names

Principle Statement

“Subtypes must be substitutable for their base types.” [9, p. 111]

Description

Object-oriented programming languages allow to derive subtypes from base types and subtype
polymorphism allows to pass an object of a subtype where ever an object of the supertype is
specified. Suppose P and Q are types (i. e. classes or interfaces) and Q is derived from P (so
Q is the subtype and P is the base type or supertype). A method m requiring a parameter
of type P can be called with objects of type Q because every object of type Q is also an
object of type P. This is always true as typically object-oriented programming languages are
constructed in that way.
But the programming language does not enforce that the subtype also behaves like the

supertype. Method m may work with an object of type P but not with an object of type
Q. LSP demands that a subtype (Q in the example) has to be constructed in a way that it
behaves like the supertype if it is called through the supertype interface. Q may have further
methods and it may do additional things not observable by m but m shall be able to safely
assume that its parameter behaves like an object of type P with respect to all observable
state.

Rationale

Let P and Q be types and Q a subtype of P. If LSP is not adhered to, there is an operation
accessible through the interface of P which behaves differently when called on Q. So code
which is written in terms of P will not expect the behavior and will not work as desired.

Strategies

• Only strengthen invariants in subclasses; never weaken them

• Only waken preconditions when overriding methods

• Only strengthen postconditions when overriding methods

• Use Delegation instead of Inheritance

• Figure out better abstractions

Caveats

See section contrary principles.
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Origin

Barbara Liskov: Data Abstraction and Hierarchy [65]

Evidence

• Examined LSP describes an effect created by object-oriented type systems. There is
no human factor in there, so experiments are not needed. The effect was described
and thoroughly examined by Barbara Liskov and Jeanette Wing[66]. Their reasoning
is presented in section rationale in a simplified form.

• Accepted LSP is widely known in practice, mainly because it is part of Robert C.
Martin’s SOLID principle collection [9].

Relations to Other Principles

Generalizations

Specializations

Contrary Principles

• →4.3.2 Keep It Simple Stupid (KISS): Not adhering to the LSP can be easier.

Complementary Principles

• →4.4.1 Model Principle (MP): MP demands inheritance relations to resemble an
“is-a” relationship. This means that an object of the subclass is also an object of
the superclass. This is always true in a technical sense as this is how object-oriented
programming languages handle inheritance hierarchies. However MP demands that
is shall be true in the model, too. This is slightly different from LSP which rather is
about a “is-substitutable-for” relationship.

• →4.7.4 Principle of Separate Understandability (PSU): When building inheritance
hierarchies, LSP constrains how subclasses are constructed. Namely they should comply
with the superclass contract. PSU on the other hand demands that the superclass
shall be separately understandable, which means that knowledge of concrete subclasses
and their needs should not be necessary to understand the superclass. So a superclass
should not have a specific functionality, etc. just because a particular subclass needs
this. In contrast to that the superclass of course may provide protected features for
subclasses in general. But it should be inherently clear that subclasses in general may
need this functionality without looking at a particular one.
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Examples

4.7.4 Principle Of Separate Understandability (PSU)
Variants and Alternative Names

Principle Statement

Each module shall be understandable on its own – without knowing anything about other
modules.

Description

PSU means that:

• By looking at the public methods of a class it should be clear why they are there. That
means there should be no method that is only there because a specific other module
needs it.

• By looking at the implementation of a module it should be clear how it works and why
it was done that way. That means there should be no code that is solely there in order
to make another module work.

• By looking at a private method it should be clear what it does. That means there
should be no (private) method that is only meaningful in the context of another
method.

Rationale

When a module is separately understandable, it is easier to maintain, as no other modules
have to be considered during maintenance. It is furthermore more testable, as a unit test
can easily test only this particular module without requiring integration with other modules.

Another point of view is that a violation of PSU either means that a part of the functionality
does not belong to that module or the module has the wrong abstraction. So this is a sign
of a design that needs improvement.

Strategies

When a module does not comply with PSU, this means that either a part of the functionality
of the module does not belong here or the module has the wrong abstraction. So strategies
for making a solution more compliant with PSU are:

• Move the conflicting functionality to another module where it fits better (see →4.5.1 Tell
don’t Ask/Information Expert (TdA/IE), →4.4.2 High Cohesion (HC), and →4.4.1Model
Principle (MP)).

• Build up a new module for the conflicting functionality (see →4.4.2 High Cohesion
(HC)).
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• Find the right abstraction for the module that allows the functionality to stay here
(see →4.4.1 Model Principle (MP)).

Caveats

See section contrary principles.

Origin

This principle is newly proposed in this wiki. Nevertheless it is believed that it is not “new”
in the sense that its a new insight. Its rather something that is commonly known but hasn’t
been expressed as a principle, yet.

Evidence

• Proposed (see origin)

Relations to Other Principles

Generalizations

Specializations

Contrary Principles

• →4.3.2 Keep It Simple Stupid (KISS): Not to adhere to PSU is sometimes easier.

Complementary Principles

• →4.7.1 Information Hiding/Encapsulation (IH/E): PSU is about constructing a module
such that its inner workings (and its usage also) can be understood without knowledge
about other modules. IH/E on the other hand is about constructing a module in a
way that hides the inner workings so it can be used without knowing them.

• →4.4.1 Model Principle (MP): The model contains the only information that should
be necessary to understand the module. And if the abstraction of the model is wrong,
MP helps getting it right.

• →4.5.1 Tell, don’t Ask/Information Expert (TdA/IE): At its heart PSU is about
responsibility assignment. When a module is not separately understandable, this
means that a responsibility is scattered across several modules. TdA/IE gives another
aspect of responsibility assignment.

• →4.5.2 Low Coupling (LC): Not adhering to PSU means that responsibilities are
scattered across several modules. This typically also means increased coupling.
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Examples

Example 1: Parsing Data Suppose a program parses data stored in an spreadsheet file. There
are three classes:

• SpreadsheetReader: This reads the spreadsheet and creates DomainObject objects.

• DomainObject: This is the data which was contained in the spreadsheet and is now
processed by the program in some way.

• SpreadsheetWriter: This class takes a DomainObject and writes it back to the spread-
sheet.

In such a scenario it might be convenient to simplify SpreadsheetWriter by adding in-
formation about the spreadsheet to DomainObject. This might be some cell coordinates
for example. SpreadsheetReader can store them into the newly created DomainObject and
SpreadsheetWriter uses the data to store the DomainObject to the correct position in the
spreadsheet. The problematic method is DomainObject.getCellPositionInSpreadsheet().

This is a simple solution (see →4.3.2 Keep It Simple Stupid (KISS)) but it violates PSU.
DomainObject is not understandable on its own. It holds data (namely the cell position in
the spreadsheet) that is only meaningful in the context of the other two modules. During
maintenance this data could accidentally be altered (resulting in a corrupted output file).
Maintenance effort is also increased simply by distracting the maintainers who might wonder
what this data is and if it is relevant for their task.

A better solution (w. r. t. PSU) would be to give SpreadSheetWriter the ability to determine
the correct position in the spreadsheet itself. This is more complicated and may involve
searching the spreadsheet for the correct position. But DomainObject is easier to understand
and less prone to errors.

Example 2: Dependent Private Methods In a module that computes results in a bowling
game there might be a method strike() which returns true when the player has thrown a
strike, i. e. hit all 10 pins with only one ball throw.
private int ball;
private int [] itsThrows = new int [21];

private boolean strike ()
5 {

if ( itsThrows [ball] == 10)
{

ball ++;
return true;

10 }
return false;

}
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Here the method not only computes if the current throw is a strike or not but also advances
the counting variable ball. This is only meaningful in the context of another method. If this
is correct behavior or a defect cannot be told solely by looking at this method. Should ball
be increased by 1 or 2? Should it also be increased when the throw is not a strike? Should
it be increased at all? It cannot be told without looking at other parts of the code. So this
method violates PSU.

The following solution is better:
private int rolls [] = new int [21];

private boolean isStrike (int frameIndex )
{

5 return rolls[ frameIndex ] == 10;
}

Here no counting variable is increased in some way. Furthermore this method does not rely
on a correctly set private variable but gets a parameter.

This example is taken from Robert C. Martin.

• First version: see [9]

• Second version: see [67]



5 Discussion of the Principle Language

5.1 Usage
5.1.1 Usage of Principle Languages
The general idea behind principles and how they are used has already been presented in
chapter 2. In a nutshell it’s this: When making a design decision, possible solutions can be
assessed using a principle language. A principle language interconnects principles so that
the consideration of one principle inevitably leads to other principles that should also be
considered. Starting from one or two obvious principles, typically results in a set of around
four characterizing principles that describe the design problem by pointing out advantages
and disadvantages of different solutions. The solutions can then be informally rated according
to the principles and the designer can make an informed decision. In this way the reasons
for taking the design decision are also easily communicable as they manifest in the principles.
The set of principles then becomes a language for thinking and talking about design.

When to make design decisions and which principles to start with, heavily depends on
the software development process. In particular waterfall-like processes and agile processes
work fundamentally different. Especially there are different generative design approaches
(see section 2.1.1) in place.

Furthermore the usage depends on the principle language or rather the purpose or level of
abstraction of the principle language. This thesis presents a principle language for object-
oriented design. But other principle languages may be envisioned, too. There may be
principle languages more focused to implementation, more to architecture or to requirements.
These differences in the level of abstraction may also influence the usage. The following
sections describe how this particular principle language presented in chapter 4 can be used
in traditional, plan-driven environments and in agile environments.

5.1.2 Navigating the Principle Language
In order to end up with the aforementioned set of characterizing principles, one has to start
with one or two principles and then navigate the principle language. The starting principles
are often obvious as they are directly about the given design problem but they can also be
suggested by the used generative design method (see sections 5.1.4 and 5.1.5).
When designing inheritance hierarchies the →4.7.3 Liskov Substitution Principle (LSP)

is the obvious starting principle, for deciding on whether and how to remove duplicated
code →4.3.4 Don’t Repeat Yourself (DRY) is the obvious choice and when deciding upon
the signature of a method, it’s →4.6.1 Easy to Use and Hard to Misuse (EUHM). LSP is

80
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precisely about inheritance hierarchies, DRY about duplication and EUHM about interface
design. So these are the obvious choices.
But as the suitable starting principle is not always as evident as in these examples,

there is further aid in finding it. The nineteen principles in the principle language are
roughly categorized. There are general principles, principle for modularization, module
communication, interface design, and internal module design. So when facing a design
problem about how to divide a system into modules, how these modules shall communicate,
how module interfaces shell be crafted or how the internal structure of a module shall look
like, there is a small group of principles being candidates for a starting principle. Moreover
the very first of the principles in these groups (ML, MP, TdA/IE, EUHM, IH/E) is slightly
more general than the others making it a predominant candidate for a starting principle.
When one or two starting principles have been found, the principle language lists other

principles that are likely to be considered, too. There are different relationships between the
principles. First of all there are the generalization/specialization relationships. Sometimes a
principle does not quite fit but somehow resembles the idea. In this case it may be helpful to
replace it with a generalization of the principle. On the other hand there are cases where a
specialization fits better because it is more tailored to the given problem. A more specialized
principle typically is more helpful as it is easier to apply when it fits the problem. More
general principles are harder to apply but are applicable to a wider range of design problems.

Normally generalizations and specializations are meant to replace the principle currently
considered. But there are also cases where one might want to keep both in the characterizing
set. This is also the usual case for the other two relationships: contrary and complementary
principles. These are not meant to point to possible replacements but to principles that
should be considered in addition. Contrary principles are more likely that they reveal
drawbacks of the design so they can be regarded more important. Complementary principles
rather point to further aspects of the design problem that are not necessarily disadvantages.
This categorization is only rough. For a particular design problem a contrary principle may
be rather complementary and a complementary principle may also reveal drawbacks.

The principle discovery is recursive which means that the newly discovered principles are
again examined for related principles that may also become part of the characterizing set.
This process stops long before a major part of the principle language is considered because
principles that do not qualify for being included into the characterizing set are not examined
further.
A principle that is somehow related to a principle that is currently considered is not

guaranteed to be relevant for the given design problem. In the majority of the cases it is
clear if a principle qualifies for consideration. In those cases where it is not obvious or the
designer is too inexperienced to judge that, the principle language gives further guidance.
First there is a short textual explanation of the relationship. This explains the most common
reasons for navigating to the other principle. Furthermore every principle description has a
rationale section. If the rationale given there also applies to the given design problem, the
principle qualifies and is inserted into the characterizing set. Also the section description
and examples may help understanding the principle.
This discovery process is not meant to last long. It’s neither meant to be documented
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or otherwise to be followed pedantically. The idea is to have a lightweight approach which
is not much more than a way of thinking. While inexperienced designers might want to
look every principle up, more advanced ones will only need a short glance at the principle
language graph (see figure 4.1 on page 24). Experienced designers who do not need this kind
of guidance at all can skip all that and just use the principle language as a set of vocabulary
for talking about their design. So the principle language helps designers with very different
levels of experience.

5.1.3 Level of Abstraction
Concerning the level of abstraction, the principle language is used for all low-level design
tasks. The language is not designed for large-scale architectural decisions. If a principle
language shall also be used for that purpose, another principle language will be necessary.
For such a case some low-level principles like IAP are not helpful and others concerned with
groups of classes, packages, layers, and subsystems are missing. But everything beneath that
level, everything involving one or a few classes, can be addressed.
Everything which takes place inside a single method is also out of scope. The principle

language does not fit for algorithm design and coding. A completely different set of principles
would be necessary here. Principles on this scale would rather deal with the usage of
particular language constructs like loops, recursions, and try-catch blocks.

5.1.4 Using Principle Languages in a Plan-Driven Environment
Traditional, plan-driven processes are typically derived from the waterfall-model. This means
there is a dedicated design phase and a subsequent implementation phase. The number of
phases, the degree of design documentation, the produced artifacts, etc. may vary but the
essential way of thinking is that design always precedes implementation.

Depending on how detailed the design phase is, there may still be some design decisions left
to the implementation phase. The one extreme case would be that only the coarse-grained
architecture is designed in the design phase leaving everything else to implementation.
And the other extreme would be that absolutely everything is designed upfront so that
implementation is only a manual task transforming the specification into program code.
Independent from the specific phase there are certain low-level design decisions to be

taken and they are made before they are implemented. So the principle language is used in
the design and implementation phases for all the design tasks at the appropriate level of
abstraction (see section 5.1.3).

The typical generative approach used here is the Booch method [48] or something similar.
This means the reality is modeled and this object model of reality is gradually transferred to
an executable program. The principle directly corresponding to that idea is the →4.4.1 Model
Principle (MP). So in many cases the starting principle will be MP. Depending on the given
design problem sometimes another principle is the more obvious start. But in plan-driven
approaches there is a tendency for MP.
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5.1.5 Using Principle Languages in an Agile Environment
Agile processes work fundamentally different. Normally there is no dedicated design phase
preceding implementation and if there is one, it concentrates on important architectural
decisions. The generative design approach which is typically used is test-driven development
(TDD) (see [9] or any other book on agile methods). This means, software development is
the continuous repetition of the following steps:

1. Write a test case (i. e. an automated test) for the next bit of functionality.

2. Write just enough code to make the test pass.

3. Refactor in order to improve the structure of the software.

In practice there is more about TDD than that but this is the part that is important for
the discussion here.
Each step involves a bit of design. The design decisions taken in these steps are quite

different so there are different preferred starting principles for each step: The first step is to
write a test case for the next piece of functionality. This already involved the design decisions
dealing with interface design. The test case is written against a yet to develop interface.
Method identifiers and their signatures, usage patterns and everything that determines how
a module is used is decided in this phase. The main question the developer asks here is
“How would I want to use this module?”. The corresponding principle is →4.6.2 Principle of
Least Surprise (PLS). So PLS is the most likely starting principle during this step.

In the second step, the implementation, TDD demands doing the simplest thing that
makes the test pass. This is basically →4.3.2 Keep It Simple Stupid (KISS). First the
implementation shall be simple and just make the test pass. Later tests will ensure that the
functionality gets more and more complete. So for the second step the KISS principle is
most likely the starting principle.
The purpose of refactoring is to improve the design. In the previous step there was a

strong tendency towards simplicity. But only focusing on simplicity is harmful for good
design. Furthermore as there is no upfront design phase combining thoughts about several
features, the implementation may diverge further and the design degrades. So refactoring
is needed in order to ensure that the design quality stays high. Typical starting principles
in this phase are →4.3.4 Don’t Repeat Yourself (DRY), →4.5.2 Low Coupling (LC), and
→4.4.2 High Cohesion (HC). But almost every other principle can also be the starting point,
depending on where which design problem to cure. To further aid refactoring, each principle
description also lists a number of strategies that hint how a design which better conforms to
the principle may look like. This is not a replacement for refactoring procedures as they are
described in [8] because these strategies are more general and sometimes rather describe a
desired structure than a procedure for transforming the code into that structure. So the
strategies are rather hints than refactorings and [8] complements the principle language.

A second difference between agile and plan-driven application of the principle language is
the weighting. The principle language does not tell which principles are more important
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than others. Judging this is still the task of the designer and it is also highly dependent on
the concrete requirements for the software. Nevertheless agile designers will feel a tendency
for →4.3.2 Keep It Simple Stupid (KISS) and against →4.3.5 Generalization Principle (GP).
The reason for that is that speculative design, meaning the preparation of the design for
possible future enhancements, is objected to by agile methodologies.
Apart from purely plan-driven waterfall life-cycles and purely agile processes, there are

many intermediate approaches ranging from waterfalls with agile elements to agile processes
with additional documentation and design phases. The usage of the principle language will
depend on the concrete arrangement of the processes.

5.2 Evidence
One important question which needs to be addressed is which evidence do we have that the
19 principles are valid. There are sound reasons to believe in all of them (documented in
the rationale section of each principle description). But there may also be further evidence.
There can be documented case studies, experiments, empirical studies, etc.

Each principle has been categorized in order to answer that question (see table 5.1). Three
principles are completely new (PSU, IAP, UP). For these there is naturally no evidence
despite their rationale and the belief that they are helpful. MIMC is also new but there is
already some research on certain aspects of the principle.

Most of the principles—thirteen of nineteen—are already accepted in practice. This means
that there are at least certain communities of practitioners believing in them and using
them. Some of these “accepted” principles are broadly known and have become something
like folklore of software development (e. g. Murphy’s Law (ML) or the KISS principle) or
are already central principles to design (e. g. →4.5.2 Low Coupling (LC) and →4.4.2 High
Cohesion (HC)). Others are only known to certain groups of people. The →4.3.6 Rule of
Explicitness (RoE), which states that “explicit is better than implicit” is well known among
Python developers but hardly known to others. Nevertheless these principles are accepted.
Although they might not have been subject to scientific research yet, practice shows that
they are perceived to be helpful.

Scientific research has currently only examined seven of the principles. And even for those
principles where there is certain research, this often concentrates on parts and aspects of the
principles leaving several open questions. So research lags behind here. Further research is
necessary to affirm the validity of the principles.
The last column of the table refers to the fact that there may be some doubt about

the principles. There are always drawbacks and each principle focuses only on one aspect
neglecting the others. This is the reason why there are contrary principles. But there may
also be doubt about the positive effect the principles claim to have. This doubt threatens
the validity of the principles. Only two principles of the principle collection are marked
questioned: MIMC and MP.
For MIMC (“more is more complex”) this is the case because there is debate about the

so-called “Goldilocks Conjecture” which can be seen as a corollary of MIMC. If principles
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Table 5.1: Evidence categorization for the principles of the principle language
Principle Accepted Examined Questioned
ML 3

KISS 3 3

MIMC 3 3

DRY 3 3

GP
RoE 3

MP 3 3

HC 3 3

ECV 3 3

TdA/IE 3

LC 3 3

DIP 3

EUHM
PLS 3

UP
IH/E 3

IAP
LSP 3 3

PSU

were laws, mathematical theorems or otherwise hard rules, an invalid corollary would mean
that MIMC would have to be considered invalid, too. But as principles are only meant to be
helpful rules of thumb or heuristics, this is not a problem.

The reasons why the Model Principle (MP) is questioned are more complicated. Basically
object technology as a whole or at least its domain-modeling aspect which is central is
criticized (for more details see the corresponding principle description in section 4.4.1). As
it is the goal of this thesis to construct a principle language for object-oriented design it is
not the question whether or not to use object technology. So these doubts are mainly out of
scope here.

Summarizing this there is enough evidence for the principles so they can be incorporated
into the principle language. Most of them are already accepted in practice and only few are
really new. Nevertheless science has not caught up here and further work is still necessary.
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5.3 Other Principle Collections
As already showed in section 2.3 there are already several other principle collections. The
aforementioned section compares the design approaches (or explains the lack of those). Here
the principle collections are compared to the principle language by comparing the included
principles. The mentioned collections are: The SOLID principles by Robert C. Martin
[9], the GRASP principles by Craig Larman [12], the tips in “The Pragmatic Programmer”
by Andrew Hunt and David Thomas (abbreviated “PragProg” in this section) [13], the
principles collected by Bertrand Meyer in his book “Object-Oriented Software Construction”
(OOSC) [14], the Unix philosophy principles as stated by Eric S. Raymond in “The Art
of Unix Programming” [15], “201 Principles of Software Development” by Alan M. Davis
[16] and the laws, hypotheses, and conjectures discussed in “A Handbook of Software and
Systems Engineering” (abbreviated just “Handbook” here) by Albert Endres and Dieter
Rombach [17].

Two questions can be asked with regard to such a comparison: a) Are principles missing
in the principle language that are included in other principle collections? This would mean
the principle language needs to be enhanced in order to make it applicable to a broader
range of design decisions. b) Are there any other principle collections that already include
the principles of the principle language. This would mean that the principle language is
superfluous as it would not add anything new despite the approach discussed in chapter 2.
Table 5.2 shows how principles from other principle collections are represented in the

principle language presented in chapter 4. 3 means the principle is directly part of the
principle language, (3) means the principle is included in a generalized or specialized form,
7 means the principle is not included, and — means it cannot be included because it is not
a principle in the sense discussed here.

Table 5.2: Comparison to Other Principle Collections 1
Principle Represented? Comment
SOLID
SRP (3) HC is a generalization
OCP (3) ECV is a generalization
LSP 3

ISP (3) HC is a generalization
DIP 3

GRASP
Controller 7 rather architectural scale
Creator 7 MP compensates for the lack of this principle
High Cohesion 3

Indirection — not a principle
Information Expert 3

continued on the next page
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Low Coupling 3

Polymorphism — not a principle
Protected Variation — not a principle
Pure Fabrication — not a principle
The Pragmatic Programmer
Don’t Repeat Yourself (tip 11) 3

Make It Easy To Reuse (tip
12)

(3) GP is a generalization

Eliminate Effects Between Un-
related Things (tip 13)

7 very general principle; compensated by HC, ECV, PSU,
and IH/E

Program Close To The Prob-
lem Domain (tip 17)

7 very special principle concerned with the use of deomain
specific languages; compensated by GP and MP

Keep Knowledge in Plain Text
(tip 20)

7 very special principle; compensated by KISS and GP

Write Code That Writes Code
(tip 29)

(3) DRY is a generalization

Crash Early (tip 32) 7 rather on implementation scale
Use Assertions to Prevent the
Impossible (tip 33)

7 rather on implementation scale

Use Exceptions for Excep-
tional Problems (tip 34)

7 rather on implementation scale

Finish What You Start (tip 35) 7 rather on implementation scale
Minimize Coupling Between
Modules (tip 36)

3

Configure, Don’t Integrate
(tip 37)

7 rather on architectural scale

Put Abstractions In Code, De-
tails In Metadata (tip 38)

7 rather on architectural scale

Always Design for Concur-
rency (tip 41)

7 very special principle; compensated by GP

Separate Views From Models
(tip 42)

7 rather on architectural scale

Abstractions Live Longer than
Details (tip 53)

3 this is basically GP

(54 other tips) — not a principle
Object-Oriented Software Construction
Direct Mapping 3 MP
Few Interfaces (3) LC is a generalization
Small Interfaces (3) LC is a generalization
Explicit Interfaces (3) RoE is a generalization
Information Hiding 3

continued on the next page
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Linguistic Modular Units 7 rather implementation scale
Self-Documentation Principle 7 compensated by PSU
Uniform Access Principle 7 very special principle; compensated by IH/E
Open-Closed Principle (3) ECV is a generalization
Single Choice Principle (3) DRY is a generalization
Command-Query Separation (3) PLS is a generalization
Operand Principle 7 very prescriptive principle; compensated by MIMC, HC,

and MP
Symbolic Constant Principle 7 rather implementation scale
Taxomania Rule 7 compensated my MIMC
(186 other principles, rules,
precepts and definitions)

— not a principle

Unix Philosophy (Eric S. Raymond)
Rule of Modularity 7 rather architectural scale
Rule of Clarity (3) KISS is a generalization
Rule of Composition 7 rather architectural scale
Rule of Separation 7 rather architectural scale
Rule of Simplicity 3 KISS
Rule of Parsimony (3) KISS is a generalization
Rule of Transparency (3) KISS is a generalization
Rule of Robustness (3) KISS is a generalization
Rule of Representation 7 not applicable
Rule of Least Surprise 3

Rule of Silence 7 rather UI design
Rule of Repair 7 rather implementation scale
Rule of Economy 7 not applicable
Rule of Generation (3) DRY is a generalization
Rule of Optimization 7 rather process design
Rule of Diversity 7 very general principle
Rule of Extensibility (3) GP is a generalization
201 Principles of Software Development
Encapsulate 3 IH/E
Don’t Reinvent the Wheel 7 very specific principle; compensated by others depending

on context
Keep It Simple 3 KISS
Avoid Numerous Special Cases 7 rather implementation scale
Minimize Intellectual Distance (3) MP is a specialization

continued on the next page
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Keep Design Under Intellec-
tual Control

7 compensated by KISS, IH/E, PSU, MP, and PLS

Maintain Intellectual Integrity (3) UP is a generalization
Conceptual Errors Are More
ignificant Than Syntactic Er-
rors

7 rather process design

Use Coupling and Cohesion 3 HC, LC
Design for Change (3) GP is a generalization
Design for Maintenance (3)
Design for Errors 3 ML
Build Generality into Software 3 GP
Build Flexibility into Software (3) incorporated in GP
“Garbage In, Garbage Out” Is
Incorrect

7 rather implementation scale

(11 other principles) — not a principle
A Handbook of Software and Systems Engineering
Simon’s Law 7 rather architectural scale; partly addresses by LC
Constantine’s Law 3 Constantine’s Law is the combination of LC and HC
Parnas’ Law 3 IH/E
Fitts-Shneiderman Law 7 only relevant for UI design
Booch’s Second Hypothesis (3) incorporated in MP
Bauer-Zemanek Hypothesis 7 rather process design
Gamma’s Hypothesis 7 very special principle; lack compensated by several others

depending on context
Dijkstra-Mills-Wirth Law 7 very general principle; compensated by MP, KISS, PSU,

and PLS
McIlroy’s Law 7 very special principle; lack compensated by several others

depending on context
Dahl-Goldberg Hypothesis 7 not applicable
Beck-Fowler Hypothesis 7 rather process design
Lehman’s First Law (3) GP is a generalization
Lehman’s Second Law 7 rather process design
McCabe’s Hypothesis 7 rather process design
Wilde’s Hypothesis 7 not applicable
(11 other laws, hypotheses
and conjectures)

— not a principle

The table shows that most of the principles in the other collections are either incorporated
or do not fit into the principle language. In th latter case they belong to other contexts
(high-level architecture, UI design, process design, etc.) or they are not even principles
according to definition 5. Only a few principles are not included because they are very
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Table 5.3: Comparison to Other Principle Collections 2
Principle SOLID GRASP PragProg OOSC Unix 201 Principles Handbook
ML 3

KISS 3 3

MIMC
DRY 3 (3) (3)
GP 3 (3) 3 (3)
RoE (3)
MP 3 (3) (3)
HC (3) 3 3 3

ECV (3) (3)
TdA/IE 3

LC 3 3 3 3 3

DIP 3

EUHM
PLS 3

UP
IH/E 3 3 3

IAP
LSP 3

PSU

special or very general. In these cases other principles compensate for the lack so there is no
need to enhance the principle language. Question a) from above can thus be answered with
no. At least these principle collections do not indicate that principles are missing.
Table 5.3 depicts the inverse relationship: Which principles of the principle language

in chapter 4 are represented in which other principle collection? 3 means the principle is
represented and (3) means a generalization or specialization is included.

The table shows that none of the collections includes not even half of the principles. Also
question b) from above can be answered with no. These principle collections do not make
the principle language obsolete. It contains a unique set of principles covering a large part
of the design space.



6 Evaluation

6.1 Goals
When something new is proposed, it needs to be evaluated. Such evaluations can be very
laborious and can be subject of dedicated theses. The concept of principle languages is very
new as this is a new area without prior research. Nevertheless at least two small experiments
have been conducted in order to evaluate the approach and the principle language.

The first experiment is the prototypical development of a feed reader application using an
agile process. As explained in section 5.1.5 in agile processes the principle language is used
to initiate refactoring or rather to judge whether refactoring is necessary. The two competing
approaches for that purpose are Robert C. Martin’s SOLID [9] and Martin Fowler’s Code
Smells [8] (see sections 2.3.2 and 2.3.3). So for the experiment the usage of the principle
language has been documented and compared to the two competing approaches. The second
experiment is the examination of the CoCoME system [68] using the principle language.

The goals of this experiment are to evaluate the approach as well as the principle language.
First of all the question is whether principle languages can be used as described in chapter 2.
And second it needs to be evaluated if the principle language presented in chapter 4 is helpful
or needs rework.

6.2 FeedReader
6.2.1 Setup
The task in this experiment was to develop a feed reader for RSS news feeds [69]. Such
a software downloads and parses XML files and presents the output. The software uses
Java, Swing and XML. As a development methodology, a agile approach using test-driven
development (TDD) was used.

The FeedReader example is only a very small, prototypical piece of software. Nevertheless
it yielded 49 design decisions. Each of these decisions was taken using the approach proposed
in this thesis. The characterizing sets of principles and the decisions were documented.
Furthermore it was also documented how much guidance Fowler’s code smells and Martin’s
SOLID principles would give.

6.2.2 Questions
For the FeedReader experiment the following questions have been addressed:

91
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1. Does the approach work, i. e. does the principle language generate appropriate charac-
terizing sets of principles for arbitrary design problems?

2. Are the characterizing sets small enough, i. e. typically not more than fife principles?
Too large characterizing sets become unhandy.

3. Are principles missing, i. e. are important aspects not considered? In such a case the
principle language would need to be enhanced.

4. Are some principles unused (and should thus be removed)?

5. Does the principle language help better than SOLID and code smells?

Naturally it is hypothesized that the approach does work and the principle language is
neither too small nor too large. SOLID has the fewest principles hence it is assumed that
the other two approaches will perform better in the experiment. Presumably the principle
language approach is applicable for a widest set of design decisions and gives the most
guidance. The experiment will show if these assumptions are correct.

6.2.3 Results
The experiment showed that the principle language is able to produce characterizing sets for
arbitrary design decisions (see question 1). The protocol in appendix A lists for each design
decision how principle discovery was done. Some examples:

Design decision #3 is a very typical low-level design decision made in the refactoring step:
There is some duplicated code. The developer now has to decide whether to extract this
duplicated code into a new method or not. The obvious starting principle is →4.3.4 Don’t
Repeat Yourself (DRY) as this principle is exactly about avoiding duplication. In this case
this is quite similar to the code smell “duplicated code”. But the principle language does not
limit itself to one aspect. Avoiding duplication comes at a cost and the principle language
lists these disadvantages as contrary principles so the developer can make an informed
decision. In this case DRY lists →4.3.2 Keep It Simple Stupid (KISS) as a contrary principle.
Not introducing a further principle may be simpler. So at this stage the characterizing set is
{DRY, KISS}. KISS in turn lists →4.3.3 More Is More Complex (MIMC) as a specialization.
Here MIMC fits better as it more specifically describes the disadvantage: A new method
would have to be added which increases complexity as it increases the number of methods.
MIMC replaces KISS in the characterizing set. As the relationships of MIMC do not qualify
for being included into the characterizing set, the result of the principle discovery is {DRY,
MIMC}. There are two possible decisions the developer can make: either leave the code
duplication as it is (according to MIMC) or extract a new method (according to DRY). This
decision is left to the developer but the principle language helps finding the relevant aspects
to consider. Here it was decided to extract a new method because the additional complexity
according to MIMC was justified negligible.
Another interesting example would be design decision #9: A prior refactoring step

produced a method parseFeedItem which takes the parameters items and i. The method
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parses item i in the list items. Certainly every good developer knows that it is better to
supply the item to parse directly instead of specifying a list and an index. An inexperienced
developer, like an apprentice for example, might say that it does not matter as both versions
do exactly the same thing. But an experienced developer “feels” that the one solution is
clearly better than the other. Explaining the reasons for that feeling may be difficult, tough.
The principle language helps here.

As starting principles for this decision →4.6.1 Easy to Use and Hard to Misuse (EUHM)
and the →4.3.5 generalization Principle (GP) are used. The design problem is about interface
design. So EUHM is a natural choice. GP was added because it was realized that the single
parameter solution would allow for any item to be parsed and not just ones contained in a list.
EUHM leads to →4.7.2 Invariant Avoidance Principle (IAP) and →4.4.1 Model Principle
(MP). GP leads to the →4.3.6 Rule of Explicitness (RoE) which in turn adds MIMC. So the
produced characterizing set is {EUHM, GP, IAP, MP, RoE, MIMC}. each of these principles
give reasons for preferring the single parameter solution over providing a list and an index:

EUHM The solution with one parameter is easier to use and even more the other solution
bears possibilities for misuse as one could specify the wrong index.

GP The single parameter solution is more general as it works with items not stored in a list.

IAP The two parameter solution is worse because it has the precondition that the index has
to be inside the bounds of the list.

MP The single parameter solution is better because the “model of the method”, i. e. something
that parses items, logically does not include a list.

RoE Passing the item directly to the method is more explicit.

MIMC more parameters are worse.

Not every of these reasons is easy to see (e. g. the MIMC reason is clear and the MP
reason is less clear). But the principle language revealed plenty of possibilities to explain the
apprentice why the single parameter solution is clearly the better choice.
Note that a different path trough the principle language might have been taken, too.

Another possibilities would be for example: EUHM leads to IAP and KISS, KISS to GP, GP
to RoE, and RoE to MP. KISS is then replaced by MIMC. This path has even the advantage
that it only needs one starting principle. And also the characterizing sets are not unique.
An equally good characterizing set would be {ML, KISS, GP, RoE}. This set is produced by
the the following sequence: EUHM is replaced by ML, ML leads to KISS, KISS to GP, GP
to RoE. And there are also several other possibilities. So the approach is neither determined
in the produced characterizing set, nor deterministic in how it is produced. Nevertheless it
generates reliably generates appropriate characterizing sets and is thus helpful.
Table 6.1 shows the characterizing sets of principles for all the design decisions taken in

the development of the FeedReader example. The rightmost column shows the size of the
characterizing sets. the size ranges from 1 to 7 principles with an average of approximately
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3.2. So question 2 can be answered: The characterizing sets typically are small enough.
Large characterizing sets are rare exceptions (there is only one design decision which yielded
a characterizing set of 7 principles). So the characterizing set stays small enough to be
useful.
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Listing 6.1: Subscription Depends on Downloader and Channel
public class Subscription
{

// these need to either reference a concrete class or a dummy:
// DownloaderImpl or DummyDownloader

5 // and ChannelImpl or DummyChannel respectively
private Downloader downloader ;
private Channel channel ;
...

}

During the course of the experiment one principle was found to be missing and was added
(→4.3.6 Rule of Explicitness (RoE)). Design decision #31 deals with the mechanism to be
used for providing test isolation. There is a class called Subscription. For this class a JUnit
test shall be written. A desirable property of unit tests is test isolation which means that
the class under test is tested without integrating it with other classes. Test isolation ensures
that the tests of a module only find defects that manifest in that particular module. Without
test isolation a fault in one module may cause a large part of the test cases to fail making it
hard to find the actual cause and the piece of code that need to be fixed.

In order to allow for test isolation, the other classes Subscription depends on (Downloader
and Channel) need to be replaced by dummies or “stubs”. But this cannot be done if
Subscription directly references the other classes in its code. So it may only reference an
interface type which the other classes have to implement1. So Downloader and Channel are
interfaces and there are concrete classes DownloaderImpl and ChannelImpl which implement
them. But this is not enough because somewhere in the code the concrete classes have to
be instantiated. Furthermore somehow the internal references of Subscription have to be
updated to in the production code they point to the created classes and in the test code
they reference the dummies (see listing 6.1).

There are several possible mechanisms for doing so and a decision is needed which of these
mechanisms to implement. In particular there are three patterns or combinations of patterns
which would solve the problem. A Service Locator [70] can be used, Dependency Inversion
[70], or a combination of Abstract Factory and a loadable variant of the Singleton pattern [3].
Essentially dependency injection works by providing the possibility to set the inner

references from the outside (via setter methods, constructor parameters, etc.). A service
locator or “registry” is an object that can be queried for a service (i. e. an object) of a certain
type. in the above situation ti would mean that the service locator would be filled with
concrete objects or dummies and Subscription would query the locator and get what is
stored in there. Implementing the last possibility, the abstract factory, would mean to add an
abstract class providing methods for getting the required objects. Two concrete classes are

1 this is also a result of the →4.5.3 Dependency Inversion Principle (DIP)
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derived, one returning the normal “Impl” classes and the other returning dummies. Abstract
factories are often singleton. In order to make the singleton replaceable, there are variants
of the patter which allow the singleton to load arbitrary objects of subclasses (original idea
from [70] described in [71]).

The essential difference between the service locator and the abstract factory approach is,
that the abstract factory loads whole families of classes whereas the service locator stores
each object independently. See listing 6.2 for rough sketches on how the solutions would
look like.

Each solution has its advantages and disadvantages. One aspect is described by →4.5.2 Low
Coupling (LC). LC is the obvious starting principle as the goal is to decouple Subscription
from the rest of the system. The principle language yields →4.3.2 Keep It Simple Stupid
(KISS) as the next principle and KISS then leads to →4.3.1 Murphy’s Law (ML) and the
→4.3.5 Generalization Principle (GP). So the characterizing set is {LC, KISS, ML, GP}.

Clearly the abstract factory approach is the most complicated one, i. e. KISS is against this
solution. Furthermore the other two solutions are more general because the abstract factory
can only load whole families of classes whereas the others can vary in each service/object
independently. So also GP is against this solution. And because this solution is at least not
better with respect to MC and ML, it is ruled out leaving only dependency injection and
the service locator.
For comparing the two remaining possibilities a further aspect needs to be considered

which is explicitness. One disadvantage of a service locator is, that such an object obfuscates
the real dependencies. A class which depends on the service locator may depend on every
service it provides. Just looking at the interface of a class only reveals the dependency to the
service locator (and if it is a singleton not even that) but the real dependencies are hidden.
This is different with dependency injection. Here all dependencies are obvious from the
interface of the class. On the other hand dependency injection is less explicit with respect to
where the dependencies come from. It harder to see where the dependencies are provided as
this happens somewhere else. This is especially true when a dependency injection framework
like spring [72] is used. In such a case the dependencies are “magically” filled in by the
framework making the “wiring” of the objects implicit.
As a result both solutions are more or less equal with respect to KISS, ML and GP.

Dependency Inversion provides a slightly lower coupling as there is no dependency to an
additional module. It is also better with respect to explicitness of the interface but the service
locator is slightly better with respect to explicitness of the “wiring”. For the FeedReader
example dependency injection (without a framework) was chosen.
The missing principle, →4.3.6 Rule of Explicitness (RoE) was added to the principle

language. Adding the principle to the language furthermore showed that it is also helpful for
other design decisions. The protocol was adjusted accordingly.
Concerning unused principles (question 4) table 5.1 shows that all principles have been

applied except the →4.7.3 Liskov Substitution Principle (LSP). The reason for that is that
LSP deals with inheritance hierarchies and up to the development stage of the FeedReader
experiment inheritance has not been used, yet. For that reason the principle is not removed.

It can furthermore be seen that KISS, MIMC and MP are by far the most utilized principles.
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Listing 6.2: Possible Solutions for Design Decision #31
// Dependency Injection
public class Subscription
{

...
5 public Subscription ( Downloader downloader , Channel channel )

{
this. downloader = downloader ;
this. channel = channel ;

}
10 ...

}

// Service Locator
public class ServiceLocator

15 {
public Downloader getDownloader () { ... }
public Channel getChannel () { ... }

public void setDownloader { ... }
20 public void setChannel { ... }

}

// Abstract Factory + Loadable Singleton
public abstract class Factory

25 {
private Factory soleInstance ;

protected abstract Downloader getDownloaderDyn ();
protected abstract Channel getChannelDyn ();

30

public Downloader getDownloader ()
{

return soleInstance . getDownloaderDyn ();
}

35 public Channel getChannel ()
{

return soleInstance . getChannelDyn ();
}

40 public load( instance Factory )
{

this. soleInstance = instance ;
}

}
45 public ImplFactory extends Factory { ... }

public DummyFactory extends factory { ... }
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Table 6.2: Utility of the Principle Language, Code Smells and SOLID
Design Decision #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13
PL + + + + + + + + + + + + +
CS + +/- + + +/- - - + + - - + +
SOLID - - - - - - - - - - - - -

Design Decision #14 #15 #16 #17 #18 #19 #20 #21 #22 #23 #24 #25
PL + + + + + + + + + + + +
CS + - - - - - - - + + - -
SOLID + - - + - - - - - - - -

Design Decision #26 #27 #28 #29 #30 #31 #32 #33 #34 #35 #36 #37
PL + + + + + + + + + + + +
CS + - - + + - - - - + - -
SOLID - - - - - - - - - + - -

Design Decision #38 #39 #40 #41 #42 #43 #44 #45 #46 #47 #48 #49
PL + + + + + + + + + + + +
CS - - - - - + +/- + - - +/- +
SOLID - - - + - + + - - - +/- -

This is because they are very central principles in the principle language as virtually all of
the principles are somehow connected to them.

The last question addressed by the experiment is whether the approach helps better than
the two competing approaches code smells and SOLID (question 5). Each of the 49 design
decisions has been examined with respect to this question. Table 6.2 shows the result. For
each Design decisions it lists a judgment whether the principle language (PL), code smells
(CS) and SOLID provides guidance. + means that the approach helped, +/- means that
the approach helped somehow but with undeniable limitations and - means that there is no
guidance or the approach would prefer a suboptimal solution.
For all 49 design decisions the principle language provided guidance. The code smells

approach helped in 13 cases (ca. 27%) and provided limited help in further 4 cases (ca. 8%).
SOLID was only helpful in 5 cases (ca. 10%) and provided minor help in one further case
(ca. 2%).

There is a wide range of design decisions and not all of them are judgments upon
refactorings. Also prior to refactoring there are plenty of design decisions to take. Code
smells are designed to guide refactoring hence they provide little guidance for the other tasks.
The principle language is applicable in each of the steps described in section 5.1.5. This is the
reason why it is applicable in much more situations. On the other hand code smells are much
easier to apply as they are much more specific. Applying the principle language requires
finding a characterizing set, rating the possibilities and judging the solutions whereas code
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smells only require to match code against a fixed set of known to be bad structures.
The reason why SOLID is only applicable in such a small number of cases is, that not

applicable to a large number of low-level design problems. The principle language provides
guidance for all design problems beneath the architectural scale, ranging from decisions
about modularization and module communication to more low-level tasks like the decisions
about particular method signatures. SOLID is only about the higher-level design decisions
and is thus applicable only in a small number of cases.

So while this only is a very small experiment the results indicate a significant benefit for
the approach and the principle language. It is clearly more difficult to apply than code
smells but it provides guidance in a large variety of situations while still being reasonably
lightweight and fast to apply.

6.3 CoCoME
6.3.1 Setup
The Common Component Modeling Example (CoCoME) [68] was developed in 2006/2007
with the goal to define a common example for comparing component modeling techniques.
There is a design documentation and a reference implementation. Besides the original
implementation from 2007 there are several newer ones. The current reference implementation
carries the date 2011. moreover there are several models using diverse component modeling
techniques but these are not relevant for this experiment.
For this experiment the original design and the original reference implementations are

examined. In the later implementations some design flaws may have been already corrected.
So examining the original system will find the original design flaws. It furthermore gives the
opportunity to compare the old version with the current one. Some flaws might have been
removed which indicates maintenance because of these flaws.

CoCoME simulates a trading system as it can be found in supermarkets and similar stores.
The trading system provides the software for the cash registers (scanning bar codes, handling
payments, etc.), for servers in the sores (managing the stock, changing prices, etc.) and for
a server central to the enterprise (managing stores, creating reports, etc.).
The system was developed in a traditional plan-driven manner and was designed and

implemented by researchers. It uses Java RMI, JPA/Hibernate, and JMS/Apache ActiveMQ.
With about 9000 (original reference implementation) and about 19000 lines of code (2011
version) the system is still reasonably small but far from being a toy example. It is furthermore
a distributed system using several middleware technologies which creates design problems
similar to those in “real” enterprise systems.
For the experiment the original system is reviewed, design flaws are documented as well

as the characterizing set of principles revealing the flaws. Additionally it is noted whether
the new version of the system still contains the design flaw. Note that only design flaws are
recorded which are not architectural flaws. Also coding faults (concurrency problems, bad
exception handling, etc.) and anything else below the design level is out of scope. During
the review such defects were found but not documented.
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6.3.2 Questions
1. Are there design flaws in CoCoME which could have been prevented by using the

principle language? This means: Are there design flaws that can be explained and
described using the principle language so a proper usage of it would have led to a
better system? If this is the case, this will be a sign that the principle language is
helpful and its usage prevents design flaws.

2. Are these design flaws removed in the newer version of the system? This would indicate
that over time the flaw was detected and removed during maintenance. If the flaw had
not been present in the first place, this rework would not have been necessary. So in
this case this would be an indication that the application of the principle language can
reduce maintenance effort.

6.3.3 Results
Appendix B shows the protocol of the experiment. The review yielded 51 design flaws
(plus several repetitions of the same faults). The vast majority of these flaws are not very
critical. The design defect which occurred the most was a misleading or otherwise suboptimal
identifier. But there are also a few more problematic flaws.
The most problematic one probably is design flaw #5: The data layer of the inventory

subsystem is realized as a separate component Data which is implemented as a class DataImpl
having an interface DataIf. The sole purpose of the class is to provide access methods for
three subcomponents. The class has no clear advantage and is also not prescribed by the
specification2. DataImpl is instantiated by a class named DataIfFactory. The code of this
class is shown in listing 6.3.

Listing 6.3: The DataIfFactory Class
public class DataIfFactory {

private static DataIf dataaccess = null;
private DataIfFactory () {}

5 public static DataIf getInstance () {
if ( dataaccess == null) {

dataaccess = new DataImpl ();
}
return dataaccess ;

10 }
}

Essentially DataIfFactory resembles a mixture between the design patterns factory and
singleton [3]. The latter one is important here. The purpose of a singleton is to make a single
instance of a class globally accessible. Here DataImpl is not ensured to be only instantiated

2 this is design flaw #7
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once as it still has a public constructor. Nevertheless the “factory” class makes it globally
accessible. In every part of the software DataIfFactory.getInstance() can be used to get
hold of the data component. And since DataIf makes the three subcomponents accessible,
also these are accessible from everywhere. There is no need to pass a reference around.

The problem with this approach is, that this creates a tight coupling between every class
that uses the data component and the concrete class DataImpl respectively all concrete
implementations of the subcomponents. There is no way to reuse, or test any dependent
class without also keeping the data component or changing the code. The →4.5.2 Low
Coupling (LC) Principle argues against this. The →4.3.6 Rule of Explicitness (RoE) is also
against this factory singleton. It obfuscates the real dependencies as it is not clear from the
interface of the dependent classes that they depend on the data component.
Design flaw #20 lists roughly the same problem for another major part of CoCoME:

There is a class named ApplicationFactory which has the same problems. So apart from
the database management system, two out of thee main components or six out of eight
subcomponents of the inventory subsystem are not directly reusable and there is not even
the possibility to test these components in isolation as they are always integrated. There is
no way to use dummy components in order to ensure test isolation.
This also goes against the component idea CoCoME especially was designed for. A

component shall be independent from the rest of the system. It shall be independently
reusable, independently testable, and independently substitutable. While substitutability is
not hampered like the other two goals, it is clear that making the components more or less
singletons is a severe design flaw which is not consistent with the idea of component-based
software engineering.
A much better solution would be to use dependency injection [70]. This would mean,

instead of making the components globally available, references to them would have to
be supplied to the dependent components for example via constructor parameters, setter
methods. Factories also play a major role in this approach but they work differently.
Listing 6.4 shows how such a solution can look like.

Listing 6.4: A Factory for Dependency Injection
public class StoreServerFactory
{

private StoreServerFactory () {}

5 public static StoreIf createStoreComponent ()
{

return new StoreImpl ( createPersistenceComponent (),
createStoreQueryComponent );

}

10 // these are the tree subcomponents of the Data Component
public static PersistenceIf createPersistenceComponent () {

return new PersistenceImpl (); }
public static StoreQueryIf createStoreQueryComponent () { return

new StoreQueryImpl (); }
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Table 6.3: Design Flaws in CoCoME Which Have Been Fixed
Flaw #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14
Fixed 3 (?) (3)

Flaw #15 #16 #17 #18 #19 #20 #21 #22 #23 #24 #25 #26 #27
Fixed (?) 3 3 3 3 (?) 3

Flaw #28 #29 #30 #31 #32 #33 #34 #35 #36 #37 #38 #39 #40
Fixed 3 3

Flaw #41 #42 #43 #44 #45 #46 #47 #48 #49 #50 #51
Fixed 3 3 3 3 3 3 (?) 3 3 3 3

public static EnterpriseQueryIf createEnterpriseQueryComponent ()
{ return new EnterpriseQueryImpl (); }

}

An explicit class for the data component is not necessary. Rather the subcomponents
are passed directly to the dependent components without using the indirection created by
the current realization of the Data component. This is consistent with the specification
given in [68]. The code in the listing is a bit simplified. In the real system there are further
dependencies which have to be taken into account. The code just shows the principle.

Injecting the dependencies has the advantage that coupling stays low and there is no direct
dependency on the concrete implementation (LC). This makes the components reusable
and testable. Furthermore the dependencies are directly visible from the interface of the
component (RoE). And additionally the components are more general as arbitrary implemen-
tations for the dependencies can be supplied to the components (see →4.3.5 Generalization
Principle (GP)). So {LC, RoE, GP} is the characterizing set of principles which would have
helped avoiding this design flaw3.

For all 51 design flaws characterizing sets could be found. So question 1 can be answered
positively: There are flaws in CoCoME which can be explained using the principle language.
It can be assumed that a consequent usage of the principle language would have prevented
many of the flaws found in the system.

Question2 can also be answered based on the given data. Table 6.3 shows which flaws have
been corrected which is assumed to be correlated with the maintenance work on the flaws.
3 means the flaw has been fixed, (3) means the flaw has not been fixed but recognized as
such, and (?) means the flaw is not directly fixed but the design is different now.

There are 51 flaws and 18 of them have been fixed, one has been recognized and in another
four cases the design was changed in a different way. So a large part of the design flaws
showed up during the development and caused maintenance. If the flaws had not been make
in the first place, less maintenance work would have been necessary. This indicates that the

3 Note that basically the same question also arose in the FeedReader example. See section 6.2
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Figure 6.1: Distribution of the Principle Usage in the FeedReader Example

principle language can help reducing maintenance effort (question 2).
Apart from the discussed questions two other observations have been made. First of all it is

noticeable that the distribution of the principles used in the characterizing sets is completely
different. Figure 6.1 shows the distribution for the FeedReader example and figure 6.2 shows
it for the CoCoME example. In the first one KISS and MIMC were used most whereas in
the latter MP and PLS were much more used than the other ones. The reason for that is
that the →4.4.1 Model Principle (MP) and the →4.6.2 Principle of Least Surprise (PLS)
are used to reason about identifier naming. A module identifier should explain the module
in such a way that its behavior does not surprise the user and it should be named according
to some model. As suboptimal identifiers were the most common design flaw, these two
principles are used most. Furthermore the task was completely different. In the CoCoME
example only design flaws have been recorded whereas in the FeedReader example every
design decision was examined.
The second observation is the usage of the →4.4.1 Model Principle (MP). MP was used

very often and in a large variety of cases. It is a broad principle which has many aspects.
MP is about identifier naming (flaws #3, #4, #9, #14 and many others), domain modeling
(flaw #12), the usage of objects (#16, #27, #31, . . . ), the assignment of responsibilities
(#18, #25, . . . ), the natural relationships among objects (#43, #45) and other aspects.
This variety makes MP sometimes more difficult to apply than other principles. A future
improvement of the principle language could therefore be to add specializations of the model
principle and in return for that maybe replace some of the less used principles by fewer more
general ones.
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Figure 6.2: Distribution of the Principle Usage in the CoCoME Example

6.4 Conclusion
The results of the two experiments look promising. They showed that the principle language
is capable of producing characterizing sets for arbitrary design problems. The principle
language approach also proved to be applicable for a larger set of problems than Martin
Fowler’s code smells and Robert C. Martin’s SOLID principles. Despite being some helpful
guidance the results indicate that a consequent application of the principle language approach
may be beneficial for maintainability of the software to develop.

But of course the experiments also have their limitations. The examined software is rather
small (especially the first one), the examined systems have been designed and developed by
researchers (and not practitioners) and although there was some kind of maintenance for the
CoCoME system, this is certainly different from a system which is maintained because it
is actually used. Moreover none of the experiments involved communication about design
decisions or any other people except the author of the principle language applying it.

So this can just be the start. More experimentation is necessary in order to gain confidence
in the approach and the language. It is especially worthwhile to examine the utility of the
principle language with respect to different levels of experience or different processes.



7 Outlook and Further Work

Principle languages are proposed in this thesis. This is a whole new research area so it is
naturally under-explored. Many open questions remain and many possibilities for further
research exist. As already stated in section 5.2 surprisingly few principles have been subject
to scientific assessment. While many of them are already accepted in practice, research has
not caught up on that. Research examining the validity of single principles is still necessary.

Further examinations of the principle language proposed here may also be worthwhile. Two
small experiments have been presented in chapter 6. They support the principle language
but further evidence is still needed. Larger studies may improve confidence in the approach
and in the language. The usefulness of the principle language may also be assessed with
respect to certain domains (information systems, embedded systems, etc.) and different
experience levels of designers (students, practitioners, highly experienced designers, etc.).
Also its value for teaching could be examined.

Research might also result in an improvement of the principle language. Some principles
might be missing, others might be dispensable. Even more the navigation relationships may
change. Section 6.3 already hints some possible improvements. In particular future versions
of the principle language may include specializations for the →4.4.1 Model Principle (MP).
This thesis proposes a principle language for object-oriented design. Further principle

languages may follow. First of all there may be principle languages for other forms of software
design like user interface design, framework design, database schema design, communication
protocol design, or mobile application design. There may also be principle languages tailored
for specific domains: for the design of control systems, enterprise applications, games,
multimedia systems, aerospace applications, or software for the the automotive industry. It
is still unclear whether such a tailoring is possible or helpful. The goal of this thesis is just
to provide a general-purpose principle language. Tailorability is still an open question.

Other possibilities for principle languages include those specifically concerned with certain
non-functional requirements like performance, reliability, or security. Furthermore principle
languages on higher or lower levels of abstraction may be envisioned: principle languages
for architecture, requirements analysis, algorithm design or coding. As explained in the
section 2.1.2 a principle language for low-level design as it is presented here might be most
promising but research may show that principle languages are also helpful on other levels of
abstraction. This is also still an open research question.

And lastly there are also other programing paradigms. This principle language is specifically
constructed for guiding in object-oriented design. But there is also procedural programming
(C, Pascal, . . . ) and functional programming (LISP, Haskell, . . . ), there are fourth generation
programming languages (Progress, ABAP, . . . ) each of which have unique requirements
in how to design systems developed using these paradigms. And although partly also

107



7 Outlook and Further Work 108

object-oriented, scripting languages may benefit from an own principle language, too.
Another question which is still unexplored is the precise relationship between principles

and patterns and anti-patterns. The relationship between the idea of principles and the idea
of patterns is described in section 2.3.1. But it is still an open question how single patterns
and single principles relate, which types of relationships there are, and if this relationship
can be exploited in some way.
So there is plenty of research potential, many open questions and many possibilities for

additional principle languages.



8 Conclusion

Software design is a complex task requiring knowledge, skill and experience. But while
knowledge can be taught, gaining skill and experience takes time. But it is not only difficult
to do design and to make sound design decisions. Communicating the reasons for design
choices is difficult as well. Experienced designers may be tempted to just refer to their
“experience” when discussing designs. But doing so is not a convincing reason for a design
choice.
This thesis addressed these problems by examining software design principles. These

principles are memorable, informal design guidelines which distinguish good solutions from
bad solutions with respect to a specific aspect. Seasoned designers and well-known researchers
formulated these principles making their tacit design experience teachable and learnable.
While in the past such principles have mainly been discussed in isolation, in this work they
have been related to each other. Just like patterns have been interconnected forming pattern
languages, this work interconnected principles in order to create a principle language. The
result is part of this thesis and has also been documented using a wiki, which will go online
shortly.
Along with the principle language an analytic design approach has been developed and

described. This approach is light-weight, makes use of the proposed principle language and
helps making arbitrary low-level design decisions. In plan-driven development projects it is
used during the design and coding phase and in agile processes it fits nicely with test-driven
development.
While constructing the principle language it has been recognized that the relationships

between the principles are central to the approach but non-trivial. The key finding here is
that the relationships in the principle language have to be designed in a way that facilitates
principle discovery. The important aspect about the relationships is how they are used.
Two experiments have been conducted in order to evaluate the approach as well as the

principle language. The first experiment examines the utility of the approach compared to
Martin Fowler’s code smells and Robert C. Martin’s SOLID principles. This experiment
showed that the principle language is applicable in more design situations. The second
experiment indicated that a consequent usage of the principle language may have a positive
effect on software quality. Although this is just a first evidence, the results look promising
and suggest to place further effort into the topic. Principle languages have been newly
proposed in this thesis and the area comprises plenty of possibilities for further research.
In particular there is a lack in evidence for several principles, studying the utility of the
approach for different tasks and people is worthwhile and there are several possibilities for
constructing principle languages for other contexts. So it is is suggested to continue research
in the area of principle languages. This thesis can only be a start.
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A Protocol of the Design Decisions in FeedReader

This is a protocol of the design decisions which were taken while developing the FeedReader
example. For each design decision, a brief description of the problem is given, the result
of applying the principle language (PL), Fowler’s code smells (CS), and Martin’s SOLID
principles, as well as the result of the decision.

For the principle language the path taken through the language is given. The line lists a
subgraph of the principle language in the following notation:

• A -> B means A is considered and it lists B as a related principle. B qualifies and is
also added to the characterizing set.

• A => B means A is considered and it lists B as a generalization or specialization. A is
then replaced by B.

• Several steps in the principle discovery are separated by |.

• If the line lists principles which have no other principles leading to them, they are
starting principles.

• A -> B -> C is a shorthand for A -> B | B -> C

• A -> B, C is a shorthand for A -> B | A -> C

• PLS => EUHM -> KISS, MP | RoE -> ML => EUHM means that the starting principles
were PLS and RoE. PLS was replaced by EUHM, EUHM lead to KISS and MP. Roe
lead to ML which was also replaced by EUHM. So the characterizing set is {EUHM,
KISS, MP, RoE}.

For the code smells the protocol lists the smell, an arrow (-->) and the refactoring the
smell initiated.

The SOLID section just lists the principle which is applicable.
Furthermore each of the three approaches gets a rating. (+) means that the approach

helped, (+/-) means that the approach helped somehow but had some limitations and (-)
means that the approach did not help. If the approach was not applicable (--) the rating is
obviously (-).

-> also consider
=> replaced by
--> leads to refactoring
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===========================================================================

US1: I want to read an RSS feed in order to be informed.

#1
Problem: Parameter for PLFeeds.downloadFeed: URL or String
PL: PLS => EUHM -> KISS, MP | RoE -> ML => EUHM (+)
CS: Primitive Obsession --> replace data value with object (+)
SOLID: --
Result: Use URL

#2
Problem: Procedural static or OO main class
PL: MP -> KISS (+)
CS: ? --> Convert procedural design to objects (+/-)
SOLID: --
Result: OO

#3
Problem: Duplicate code for running the dummy web server in PLFeedTest
PL: DRY -> KISS => MIMC (+)
CS: duplicated code --> extract method (+)
SOLID: --
Result: runDummyWebserver()

---------------------------------------------------------------------------

US2: I want the output to be readable so I don't have to read ugly XML.

#4
Problem: Duplicate code for sample RSS in PLFeedTest
PL: DRY -> KISS => MIMC (+)
CS: duplicated code --> extreact method (+)
SOLID: --
Result: createDummyRSS()

#5
Problem: Method parameters for createDummyRSS() are all string
PL: MIMC | ML -> KISS -> MP (+)
CS: long parameter list --> ?
| ? --> replace method with method object (+/-)
SOLID: --
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Result: Leave it a method for now

#6
Problem: Parse XML or use RSS library
PL: KISS -> GP, MIMC (+)
CS: --
SOLID: --
Result: normally 3rd party library; here parsing XML anyway

#7
Problem: How to parse XML: DOM, SAX, StAX, ...
PL: KISS -> GP, MIMC (+)
CS: --
SOLID: --
Result: DOM+XPath
Note: Speculative Design probably would have resulted in using SAX because
maybe in the future DOM will be too slow.

#8
Problem: Long method prettifyFeed()
PL: MIMC -> MIMC (+)
CS: long method --> extract method (+)
SOLID: --
Result: parseFeedItem() and parseFeedMetaData()

#9
Problem: parseFeedItem() has parameters items and i
PL: EUHM -> IAP, MP | GP -> RoE -> MIMC (+)
CS: Long parameter list(?), primitive obsession
--> introduce parameter object (+)
SOLID: --
Result: replace parameters items and i by item

#10
Problem: Inconsistent parameter lists: parseFeedItem(StringBuilder result,
XPath xpath, Node item) and parseFeedMetaData(StringBuilder result,
Document document, XPath xpath)
PL: UP (+)
CS: --
SOLID: --
Result: reordered parameters of parseFeedItem() and parseFeedMetaData()

#11



A Protocol of the Design Decisions in FeedReader 121

Problem: Should parseFeedItem() and parseFeedMetaData() throw
XPathExpressionException or rather catch and retrow as RuntimeException?
PL: KISS, EUHM (+)
CS: --
SOLID: --
Result: throw XPathExpressionException // methods are private,
so KISS is more important

---------------------------------------------------------------------------

US3: I want to have a nice graphical UI so I don't have to use the console.

#12
Problem: feedReader.prettifyFeed(feedReader.downloadFeed(...)) is ugly
PL: IE -> MP, IH/E (+)
CS: feature envy --> extract method + move method (+)
SOLID: --
Result: processURL()

---------------------------------------------------------------------------

US4: I want the GUI to have a table for the feed items so they are
clearly arranged.

#13
Problem: FeedItem.getLink(): String or URL?
PL: PLS => EUHM -> KISS, MP | RoE -> ML => EUHM (+)
CS: Primitive Obsession --> replace data value with object (+)
SOLID: --
Result: Use URL

#14
Problem: PLFeeds is an artificial construct
PL: HC -> LC -> MP | HC -> MIMC, ECV (+)
CS: large class --> extract method (+)
SOLID: SRP (+)
Result: FeedParser

#15
Problem: FeedParser class is still artificial
PL: MP | EUHM => PLS (+)
CS: --
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SOLID: --
Result: FeedParser is Channel now and takes the URL in the constructor

#16
Problem: There is a temporal dependency between Channel.getTitle()
and Channel.processURL()
PL: PLS -> EUHM | LC (+)
CS: --
SOLID: --
Result: lazy loading using the method ensureFeedParsed();

#17
Problem: Now getTitle() and getDescription() may throw
ClientProtocolExceptions, etc.
PL: PLS | HC -> ECV -> MP | HC -> LC, MIMC (+)
CS: --
SOLID: SRP (+)
Result: Downloader class

#18
Problem: Should Channel get a Downloader object or rather the
downloaded feed as string?
PL: KISS -> GP | LC (+)
CS: --
SOLID: --
Result: String

#19
Problem: Should Channel do the parsing in the constructor or later
in a separate method?
PL: PLS, EUHM (+)
CS: --
SOLID: --
Result: later in a separate method

#20
Problem: Channel.processURL() does not process any URL
but returns the feedItems
PL: PLS -> MP (+)
CS: --
SOLID: --
Result: processURL is getFeedItems() now
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#21
Problem: Again there is a temporal dependency between Channel.parseFeed()
and Channel.getTitle(), etc.; values are null before the feed is parsed
PL: PLS -> MP -> KISS (+)
CS: --
SOLID: --
Result: initialize with empty string; this does not completely solve the
problem but now the behavior is clear by the model

#22
Problem: duplicated code for presenting error message
PL: DRY -> KISS (+)
CS: duplicated code --> extract method (+)
SOLID: --
Result: showError()

---------------------------------------------------------------------------

US5: I want the GUI to show the description of each item so I can
better decide which link to follow.

#23
Problem: duplicated creation of FeedItems in FeedItemTest
PL: DRY -> KISS (+)
CS: duplicated code --> extract method (+)
SOLID: --
Result: fixture setUp()

---------------------------------------------------------------------------

US6: I want to be able to subscribe to feeds so I don't have to type the
URL again and again.

#24
Problem: Make SubscriptionDialog modal (and add a showModal() method) oder
modeless (and add a listener)?
PL: LC -> KISS -> MIMC (+)
CS: --
SOLID: --
Result: modal
Note: temporal coupling

#25
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Problem: Return type of showModal(): bool, int or own enum?
PL: PLS -> UP -> ML => EUHM (+)
CS: --
SOLID: --
Result: enum

#26
Problem: duplicated code for closing dialog
PL: DRY -> KISS (+)
CS: duplicated code --> extract method (+)
SOLID: --
Result: close()

#27
Problem: Let SubscriptionDialog change subscriptions directly
or just provide strings?
PL: TdA -> MP, LC, IH/E | MP -> ECV | IH/E -> EUHM (+)
CS: --
SOLID: --
Result: change directly

#28
Problem: Use DefaultListModel or create an own one?
PL: KISS -> MP, GP | MP -> HC (+)
CS: --
SOLID: --
Result: DefaultListModel

#29
Problem: Code duplication in SubscriptionTest:
constructing Subscription object
PL: DRY -> KISS (+)
CS: duplicated code --> extract method (+)
SOLID: --
Result: fixture

#30
Problem: add Subscription.getChannel() or forward requests to it?
PL: TdA -> IH/E, MIMC (+)
CS: message chains --> hide delegate (+)
SOLID: --
Result: forward requests
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#31
Problem: How to make Subscription testable? It needs a Downloader
and a Channel but these should be stubbed away for the purpose
of test isolation.
PL: LC -> KISS, RoE | KISS -> ML, GP (+)
CS: --
SOLID: --
Result: dependency injection
Note: Alternatives: dependency injection, abstract factory
as a loadable singleton, service locator

#32
Problem: Use a DI framework or inject by hand?
PL: MIMC -> KISS -> GP -> RoE (+)
CS: --
SOLID: --
Result: by hand

#33
Problem: Wich injection type shall be used?
PL: KISS -> ML => EUHM (+)
CS: --
SOLID: --
Result: constructor injection
Note: Alternatives: constructor injection, interface injection,
setter injection

#34
Problem: Shall the dependencies be injected directly or shall
a factory be injected?
PL: MIMC | RoE (+)
CS: --
SOLID: --
Result: inject depedndencies directly
Note: Alternatives: inject depedndencies or inject a factory

#35
Problem: Which class shall inject the dependencies? A class of
the higher layer or a factory?
PL: HC -> ECV, LC, MIMC (+)
CS: divergent change --> extract class (+)
SOLID: SRP (+)
Result: use a factory as injector
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#36
Problem: Which kind of factory shall be used? Concrete factory
or abstract factory?
PL: DIP -> MIMC (+)
CS: --
SOLID: DIP (-)
Result: concrete factory
Note: SOLID would propose a more complicated solution.

#37
Problem: Configure factory by code or config file?
PL: KISS -> GP -> RoE | KISS -> ML (+)
CS: --
SOLID: --
Result: code

#38
Problem: Make FeedReaderFactory a utility class?
PL: KISS -> GP (+)
CS: --
SOLID: --
Result: static

#39
Problem: Parameters of Subscription constructor?
Only dependencies or also URL?
PL: KISS => MIMC | ML => EUHM -> IAP -> LC (+)
CS: long parameter list (-)
SOLID: --
Result: Dependencies and URL
Note: CS would only consider the length of the parameter list.

#40
Problem: SubscriptionDialog currently needs an empty Subscription
in order to fill it. But empty subscriptions are not allowed
anymore since #39
PL: MP -> KISS, ECV | ECV -> LC -> HC (+)
CS: --
SOLID: --
Result: Let the SubscriptionDialog create Subscriptions.
Note: Alternatives: let the dialog create subscriptions or pass in a
Subscription with dummy values or make the Dialog completely unaware
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of Subscriptions and have it just provide strings.

#41
Problem: Make dialog aware of the task carried out (add or edit a
subscription) or allow creating a SubscriptionDialog with a
null as Subscription?
PL: MP -> HC (+)
CS: --
SOLID: SRP (+)
Result: Let the SubscriptionDialog create an own subscription
if none is supplied.

#42
Problem: Add a method getSubscription() or let showModal() return
a Subscription?
PL: PLS -> EUHM -> IAP (+)
CS: --
SOLID: --
Result: let showModal() return a Subscription

#43
Problem: prettifyFeed() builds up header and feed items
PL: HC -> PSU, MIMC, ECV (+)
CS: long method --> extract method (+)
SOLID: SRP (+)
Result: extract method buildUpHeader

#44
Problem: Let the extracted method print the header
or just return a string?
PL: GP | HC (+)
CS: divergent change (+/-)
SOLID: SRP (+)
Result: don't print

#45
Problem: Channel.getDescription() needs to be accessible to the clients
of Subscription. Make channel visible to the outside (getChannel())
or mirror the method (Subscription.getDescription() delegating the call)?
PL: TdA -> IH/E, MIMC, MP (+)
CS: message chains --> hide delegate (+)
SOLID: --
Result: mirror the description of the channel in Subscription
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#46
Problem: Supply the Subscription parameter to the SubscriptionDialog
in constructor or showModal()?
PL: PLS | GP -> RoE (+)
CS: --
SOLID: --
Result: showModal()

#47
Problem: Overload showModal or pass in null explcitly?
PL: PLS | RoE (+)
CS: --
SOLID: --
Result: overload

#48
Problem: For setting the column width let the table model access the
column model of the table, create a method in MainFrame instead
or use a dedicated ColumnModel object?
PL: MP -> KISS, HC, ECV, LC | HC -> MIMC | LC -> IH/E (+)
CS: inappropriate intimacy --> ? (+/-)
SOLID: SRP (+/-)
Result: Let the table model do that for now. It's simpler.

#49
Problem: runDummyWebserver is duplicated
PL: DRY -> KISS (+)
CS: duplicated code --> extract class (+)
SOLID: --
Result: DummyWebServer class



B Protocol of the Design Flaws in CoCoME

This is a protocol of the design review of CoCoME. All the design flaws which have been
discovered are listed. For each flaw a rough description is given, the way through the principle
language in the same notation as in appendix A and a remark whether the flaw has been
fixed in the new version of CoCoME.

#1
Problem: StoreWithEnterpriseTO inherits from StoreTO; not specified
PL: MIMC -> KISS | UP
New version: still present

#2
Problem: ComplexOrderTO inherits from OrderTO and OrderTO is never used
PL: MIMC -> KISS | UP
New version: still present
Recurring: ProductWithSupplierTO
Note: Removing this unnecessary inheritance would simplify the TOs a lot
although there is not much complexity inthem anyway.

#3
Problem: ProductWithStockItem should be StockItem
PL: MP
New version: still present

#4
Problem: ScannerController sould be named Scanner; in OO the objects are
representatives
PL: MP
New version: solved
Recurring: all the other Controllers

#5
Problem: DataIfFactory makes the data component globally visible
PL: LC -> RoE -> GP
New version: still present

#6
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Problem: DataIfFactory.getInstance() returns DataIf not DataIfFactory
PL: PLS -> UP
New version: still present

#7
Problem: DataIf has no advantage and is also not prescribed by the
specification
PL: MIMC
New version: still present

#8
Problem: DataIf.getPersistenceManager() ends with -Manager the other
methods with If
PL: UP -> PLS
New version: still present

#9
Problem: TransactionContext should be named Transaction
PL: MP
New version: still present

#10
Problem: TransactionContext is a thin wrapper around
javax.persistence.EntityTransaction which itself is standard with
several implementations; it adds nothing
PL: KISS -> MIMC, GP
New version: in the new version there is TransactionWrapper which has
some value
Recurring: PersistenceContext

#11
Problem: PersistenceContext which is a thin wrapper around EntityManager
is casted to PersistenceContextImpl in order to reveal the
EntityManager
PL: IH/E | ML -> KISS
New version: still present but the problem has been recognized
(there is a comment)

#12
Problem: the domain model is anemic;
see http://www.martinfowler.com/bliki/AnemicDomainModel.html
PL: MP | TdA/IE -> HC
New version: still present
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#13
Problem: StoreQueryIf.queryProducts(): unclear which products;
better identifier: getAllProductsInStrore()
PL: PLS
New version: still present

#14
Problem: queryStockItem: bad identifier; not the items are queried
but they are queried for
PL: PLS -> MP
New version: still present
Recurring: all query methods

#15
Problem: queryStockItem should be named getStockItemByBarCode
PL: PLS -> MP
New version: still present

#16
Problem: queryStockItem gets a soreId instead of a store
PL: MP
New version: still present

#17
Problem: ProductDispatcher not named -Impl
PL: UP -> PLS
New version: there are no impl classes anymore in the new version

#18
Problem: ApplicationFactory.registerAtRegistry:
method does not belong here

PL: MP -> HC, KISS => MIMC
New version: solved
Recurring: registerAtMessageQueue

#19
Problem: ApplicationFactory.main registers store and
reporting/enterprise component
PL: HC
New version: solved

#20
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Problem: ApplicationFactory makes the components globally visible
PL: LC -> RoE -> GP
New version: solved

#21
Problem: OptimisationSolverIf.solveOptimization works with Hashtables
instead of Maps
PL: DIP
New version: solved

#22
Problem: OptimisationSolverIf sould be named TransportationCostOptimizerIf
PL: PLS -> MP
New version: still present

#23
Problem: AmplStarter should be named AmplTransportationCostOptimizerImpl
PL: PLS -> MP
New version: still present but beter/different

#24
Problem: cplex_parser in separate package in separate jar
but tightly coupled with problem to solve
PL: LC
New version: solved

#25
Problem: The optimizer should work out the optimization criteria itself
PL: TdA/IE -> IH/E, HC, MP | IH/E -> EUHM, KISS | HC -> ECV | EUHM -> IAP
New version: still present

#26
Problem: The optimizer is an internally used class and should thus
use Stores and not StoreTOs
PL: MP
New version: still present

#27
Problem: getOfferedStockItemsPerStore gets Collection<Store> stores and
long[] productIds; in OO objects should be used not IDs
PL: MP
New version: still present
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#28
Problem: getStoreDistances(Collection<Store> stores, StoreTO callingStore)
uses Store and StoreTO
PL: UP -> PLS
New version: solved

#29
Problem: storequery.queryStoreById(storeTO.getId(), pctx); There should be
a method for making a TO to a DO and the clases should take a DO as
parameter not an ID
PL: TdA/IE
New version: still present
Recurring: several similar constructs all over the code

#30
Problem: ReportingImpl.append(): name does not tell what it does
PL: PLS -> MP
New version: solved

#31
Problem: doubles are used for representing prices; better use a Money class
(value object)
PL: MP -> ECV
New version: still present
Note: a specific problem with using doubles for money are rounding errors;
this is dangerous in a commercial application. So better data types are
int, long and best: BigDecimal. Together with a currency value this makes
up a Money class. The principle languge does not treat that problem
directly. It is too specific and actually rather a misuse of the
programming languge than a normal design fault

#32
Problem: FillTransferObjects is a verb but a class
PL: MP
New version: still present

#33
Problem: why does StoreIf.changePrice() return a
ProductWithStockItemTO? Not necessary.
PL: PLS -> EUHM -> ML
New version: still present

#34
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Problem: StoreIf.getStore should be named asStoreTO
PL: PLS -> MP
New version: still present

#35
Problem: StoreIf.getOrder(long orderId): never used
PL: KISS -> MP
New version: still present

#36
Problem: ComplexOrderEntryTO[] getStockItems(ProductTO[]
requiredProductTOs): why does this return an OrderEntry?
PL: PLS -> MP
New version: still present

#37
Problem: markProductsUnavailableInStock() does more than it says
PL: PLS -> MP
New version: still present

#38
Problem: getProductsWithLowStock() ==> criterion is part of the
documentstion and inconsistent with implementation
PL: GP -> ECV | IH/E
New version: still present

#39
Problem: checkForLowRunningGoods() not only checks but also oders
PL: PLS -> EUHM
New version: still present

#40
Problem: calculateProductAmounts() has precondition:
currentStock <= mimStock
PL: IAP -> KISS
New version: still present

#41
Problem: Connector does some work in constructor
PL: PLS -> EUHM -> ML
New version: solved

#42
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Problem: Connector is a verb class
PL: MP
New version: solved

#43
Problem: OrderButton knows TableModel
PL: MP -> KISS | LC
New version: solved

#44
Problem: OrderButton has a method ActionPerformed but is not a
Listener, so the method is not invoked automatically;
same with refreshButton
PL: PLS -> EUHM
New version: solved

#45
Problem: RefreshButton knows JTabbedPane
PL: LC | MP -> KISS
New version: solved

#46
Problem: RefreshButton.addElem should be called addrefreshable
PL: PLS -> MP
New version: solved

#47
Problem: Coordinator does nothing; Coordinator and
CoordinatorEventHanlerImpl should be merged
PL: MIMC -> HC
New version: now different

#48
Problem: PrinterController.append(): function unclear as of identifier;
PL: PLS -> EUHM -> ML
New version: solved

#49
Problem: parsing numbers is not the task of a printer
PL: PLS -> MP
New version: solved

#50
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Problem: tasks of PrinterController are fuzzy; there should be
two classes one should just print and the other should decide
on what to print
PL: MP -> HC -> MIMC, LC
New version: solved

#51
Problem: CashDeskGUI.setBarcodeNotValid() unclear;
should be called showErrorInvalidBarcode
PL: PLS
New version: solved
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